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A quantum particle observed on a sufficiently large space-time scale can be 
described by means of classical particle trajectories. The joint distribution 
for large-scale multiple-time position and momentum measurements on a 
nonrelativistic quantum particle moving freely in R '  is given by straight-line 
trajectories with probabilities determined by the initial momentum-space wave- 
function. For large-scale toroidal and rectangular regions the trajectories are 
geodesics. In a uniform gravitational field the trajectories are parabolas. A quan- 
tum counting process on free particles is also considered and shown to converge 
in the large-space-time limit to a classical counting process for particles with 
straight-line trajectories. If the quantum particle interacts weakly with its 
environment, the classical particle trajectories may undergo random jumps. In 
the random potential model considered here, the quantum particle evolves 
according to a reversible unitary one-parameter group describing elastic scatter- 
ing off static randomly distributed impurities (a quantum Lorentz gas). In the 
large-space-time weak-coupling limit a classical stochastic process is obtained 
with probability one and describes a classical particle moving with constant 
speed in straight lines between random jumps in direction. The process depends 
only on the ensemble value of the covariance of the random field and not on the 
sample field. The probability density in phase space associated with the classical 
stochastic process satisfies the linear Boltzmann equation for the classical 
Lorentz gas, which, in the limit h --- 0, goes over to the linear Landau equation. 
Our study of the quantum Lorentz gas is based on a perturbative expansion 
and, as in other studies of this system, the series can be controlled only for small 
values of the rescaled time and for Gaussian random fields. The discussion of 
classical particle trajectories for nonrelativistic particles on a macroscopic space- 
time scale applies also to relativistic particles. The problem of the spatial 
localization of a relativistic particle is avoided by observing the particle on a 
sufficiently large space-time scale. 
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1. I N T R O D U C T I O N  

A limiting procedure applied to the mathematical model of a physical 
system is useful in isolating the dominant behavior of the system in a given 
regime of parameters describing the state of the system, its interactions, 
and the method of observation. The infinite-volume limit is the appropriate 
vehicle in studying the phase transitions of a large system in equilibrium. 
Similarly, use of a large space and/or time scale combined with an 
appropriate scaling of interactions can lead to hydrodynamic behavior of 
a particle system, irreversible behavior of a reversible system, or classical 
behavior of a quantum system. Limiting procedures can thus bridge the 
gap between a general fundamental theory and the various special theories 
which apply only in certain circumstances, and can lead tO a deeper under- 
standing of the fundamental theory in terms of the often intuitive and 
better understood special theories. 

Decoherence of quantum probability amplitudes can occur over large 
space-time distances. On a large enough scale, the joint distribution of 
multiple-time position and momentum measurements on a free quantum 
particle is given by a classical probability distribution on straight-line 
trajectories. On a large-scale manifold the free evolution should be described 
by a mixture of geodesic trajectories. Computations are presented for tori 
and flat rectangular regions. The experimental arrangement will determine 
what constitutes a sufficiently large scale. For example, a laboratory inter- 
ferometer exhibits quantum coherence for appropriate initial particle states 
and would have to be rescaled for decoherence to set in. Put another 
way, the large-space-time limit considered here rests on strong operator 
convergence on the Hilbert space of wavefunctions in the case of the free 
evolution, and weak operator convergence in the case of evolution in a 
random potential. In contrast to norm convergence, this convergence is 
nonuniform. This nonuniformity is perhaps best emphasized, as in ref. 12, 
by a quotation from Bell, ~ which we paraphrase as follows: 

While for any given wavefunction one can find a space-time 
scaling for which the deviation from classical behavior is as 
small as one likes, for any given space-time scaling one can find 
a wavefunction for which it is as big as one does not like. 

A quantum particle observed on a large scale and interacting sufficiently 
weakly with its environment should be described by a mixture of classical 
straight-line trajectories subjected to random influences, as may be seen in 
certain circumstances in bubble chamber tracks. The model considered here 
consists of a quantum particle scattering off static randomly distributed 
impurities represented by a random potential. The particle evolves according 
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to the reversible unitary one-parameter group e - i ( ' / h )H  generated by 
the Hamiltonian H = H o + 2 V ,  where Ho=~2/(2m),  V=v(q),  and 2. is a 
coupling constant. Here ~ is the momentum operator, q is the position 
operator, and v(x) is the potential generated by the impurities. In the 
ensemble describing the random distribution of impurities, v(x) is a random 
field which will be supposed translation invariant: ( v(xt + a ) . . .  v(x, + a) ) = 
(v(x~)... v(x,,)). 

The behavior of a single quantum particle in a random potential in the 
large-time weak-interaction limit (Van Hove limit} has been studied by 
Martin and Emch/17) Spohn, ~19) Dell'Antonio, 16) and Ho et al. ~2~ In this 
limit the coupling constant 2 ~ 0 and the rescaled time r = 22t is intro- 
duced. The spatial coordinates are not rescaled. Thus the system is 
considered on a microscopic space scale and a macroscopic time scale. 
Since the position of the particle moves off to infinity as t--* oc, only the 
momentum observable is studied. In contrast, in the present study the 
space coordinates will also be rescaled so that the system is considered on 
a macroscopic space and time scale. It will be shown that the joint distribu- 
tion of the outcomes of successive position and momentum measurements 
on the particle, containing the quantum disturbance of one measurement 
on another as expressed by the noncommutativity of observables, con- 
verges in the large-space-time, weak-coupling limit to the joint distribution 
of a classical stochastic process describing a classical point particle moving 
with constant speed in straight lines between random jumps in direction. 

The large-time, weak-interaction limit for an infinitely extended Fermi 
gas in a random potential is studied by Ho et al/~2" ts~ The local micro- 
scopic quantum state of the gas is considered on a macroscopic time scale 
and the irreversible semigroup describing the evolution of the quantum 
state and yielding increase of entropy density is obtained. The system 
behaves in this limit like an open system due to particles moving to and 
from infinity as t ~ 0~. The situation is different in the present study, where 
the gas is considered on a macroscopic spatial scale. We consider a number 
N of particles and can consider the limit N ~  oc. The system has a finite 
macroscopic density and corresponds to a low-density limit of the system 
studied in ref. 12. 

The perturbative method used here to study the random potential 
model can be controlled, as in the other studies of the model, only for small 
rescaled time r and Gaussian random fields. 

Part ic le  Tracks in Q u a n t u m  Theory.  The appearance of par- 
ticle tracks, as in Wilson cloud chamber photographs, has been studied and 
understood from the inception of the quantum theory. Heisenberg gives a 
discussion in his book, The Physical Principles of  the Quantum Theory, 



262 Landau 

which appeared in 1930. 2 Discussing the Wilson photographs, he states 
(ref. 9 w ), "It is always correct to apply the classical theory to such semi- 
macroscopic phenomena, and the quantum theory is necessary only for the 
explanation of the finer features." The motion of wave packets in uniform 
gravitational and magnetic fields was considered by Darwin in 1927/4) 

In these and many related studies the approximate motion of wave 
packets is discussed. In contrast to this, in the present study it is shown 
that the large-space-time limit provides a convenient mathematical tech- 
nique for the derivation" of precise particle trajectories for free quantum 
particles, for quantum particles on manifolds, and for quantum particles 
weakly interacting with a random environment. 

1.1. Rescaling Space, Time, and Interaction Strength 

A classical particle moving freely in R" moves on a straight-line trajec- 
tory q(t)= q + (t/m)~, q and ~ being the initial position and momentum, 
respectively. With respect to the rescaled time r = 2-'t, q ( r )=  q + 2-2(r /m) .~  
and in the limit 2--* 0 the particle moves off to infinity. Introducing a 
rescaled position .~ =22q leads to .~ ( r )=22q+  ( r / m ) ~  and in the limit 
2--* 0, .~(r)= ( r /m)~ .  Furthermore, shifting the initial position of the par- 
ticle by Xo = Xo/2 z gives in the limit -~(r) = Xo + (r/m)~'.  The equations for 
a quantum particle are the same: In the Heisenberg picture the position 
operator of the particle at time t is q(t)=q+ (t/m)~, where q and ~ are 
the time-zero position and momentum operators, which do not commute. 
Defining the rescaled time r and rescaled position 3 as above and shifting 
the initial quantum state by Xo/22 leads to -~(r)=2Zq+Xo+(r/m)~, 
which converges to .~(r)= X 0 + ( r /m)~ .  Notice that in the large-space-time 
limit the quantum position operator q(t) goes over to ,t"0+ (r/m),~, which 
is a function only of the momentum operator ~ ,  and hence they mutually 
commute at different r values. The joint distribution for large-scale position 
and momentum measurements may then be represented by a classical 
probability distribution for the initial position X 0 and the observable ~ ,  
the particle moving on the classical trajectories X 0 + (r/m).~. 

Now consider a classical particle moving through an environment of 
randomly distributed scatterers. The speed v, mean free path l, and mean 
free time T are related by 1 = vT. Let p be the density of scatterers. If a is 
the total cross section of a scatterer, then alp = 1, so l = 1/pa, T= 1/pva. In 
time t there are N = tiT collisions. The distance traveled between collisions 
is 1 and supposing random directions of travel, the average square of the 
total displacement is NI2=(t/T)lZ= vt/pa=Dt, where the diffusion con- 

-" Heisenberg's treatment is the same as M o t t ' s .  q~6~ 
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stant D = v/ptr. Now suppose the interaction strength is measured by 2. 
Then the cross section will go like a=22co  and hence D=2-2v/pco.  The 

displacement is then (Ot) 1/2 = (v/pr..o) I/2 ~.-I x//t = j. -2(v/p09)1/2 N/~ in terms 
of the rescaled time r = 22t. Rescaling spatial coordinates as above yields a 
large-scale displacement of  (v/pco) 1/2 x/'~. Thus the same large scaling of 
space-time is appropr ia te  for a free particle and a particle interacting 
weakly with its environment.  (This is important  in a perturbat ive treatment 
since the zeroth-order  term is the free evolution.) 

The scaling of space, time, and interaction strength plays an important  
role in studies of  the macroscopic  properties of many  physical systems. ~2~ 

1.2. M u l t i p l e - T i m e  P o s i t i o n  M e a s u r e m e n t s  on a 
Q u a n t u m  P a r t i c l e  

A measurement  of  the position of the particle at a particular time will 
disturb the particle and affect subsequent measurements.  Consequently the 
joint distribution for the observed position of the particle at various times 
will depend on the nature of  the appara tus  used in the measurements.  (The 
particle may  even be absorbed by the apparatus ,  making subsequent 
measurements  on the particle impossible.) ideally the detailed experimental  
a r rangement  should be modelled ~1~ within the quan tum theory, but the 
f ramework of quan tum measurement  theory provides a convenient mathe-  
matical formulat ionJ 5' ~31 The result of  a measurement  is described by an 
"opera t ion"  on the states of  the system. A standard prescription giving 
the operat ion in the case of  "ideal" measurements  is the "wave packet 
reduction formula" or "projection postulate. ''tt31 In the case of  position 
measurements  it takes the following form. Let q(t) be the self-adjoint 
opera tor  corresponding to the position of the particle at time t, and let ~, 
denote the wave function of the particle. Given a region zi c R ~, the prob-  
ability that  the particle is found in A at time t is (r  where 
Xa (x) = 1 if x e A and = 0 otherwise. [ The opera tor  X,~ (q(t)) projects onto 
the subspace of wavefunctions for which the particle is with certainty in A 
at time t.] Given that  the particle is found in A at time t, the subsequent 
state of  the particle is taken to be IIx,J (q(t))~, II-~,r~ (q(/)) ~.3 Consequently 
the probabil i ty that  the particle is found in A' at time t' given that it was 
found in A at time t is 

(x~(q( t) )~, X4,( q( t' ))z~(q(t))~k) IIx,~(q(t))~b II-z 
. 

s We are considering an ideal coarse-grained measurement with coarse graining described by 
cells such as d, and not an ideal finer-grained measurement, which would lead to the same 
probability that the particle is in 21, but for which a subsequent application of the projection 
onto d would be inappropriate. 
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Thus the joint probability that the particle is in A at time t and in ,d' at 
time t' is 

(~b, za(q(t))  Za,(q(t' ))zj(q(t))~b) 

and the state of the particle after the second position measurement is 

iiZ~,(q(t,)) z~(q(t))~l  I - l  Z~.(q(t')) z~(q( t ) )~ .  

In this way we arrive at the following formula for the joint probability that 
the particle is found in the region A~ at time t~, and then in A2 at time 
t2,..., and then A N at time tu, where t, < t2 < .-. < tN: 

P~(J~,  t, ;...; AN, tN) 

=(qJ, Za,(q(tt))Za:(q(tz)) ""Z~, (q( tN)) . "X~:(q( t z ) ) )~ , (q( t l ) )~)  (1) 

Notice that 

Pq,(A 1 , tl; A2, t2;...; AN, IN)+ P,(A';, t]; A 2, t2;...; AN, tN) 

# P~,(A2, t2; ...; AN, IN) 

where A c is the complement in R v of  A. This expresses the disturbance 
of the position measurement at time t~ on the subsequent position 
measurements, and is a typical consequence of the noncommutat ivi ty  
(complementari ty) of  observables in quantum theory. Consequently the 
usual expression for joint position probabilities given by a classical 
stochastic process will not reproduce the quantum joint distribution. 
Nevertheless we shall show that in the large-space-time limit the quantum 
joint distribution will converge to those of  a classical stochastic process. 

Actually a more general formulation within quantum measurement 
theory than the above projection postulate for position measurements will 
be necessary for the application to the weak-coupling limit in a random 
potential, since the estimates require a certain smoothness of  the functions 
and Ya is not smooth. We shall give a partition { A j} of R v and assign to 
each Aj a smooth nonnegative function q4j which vanishes outside a small 
neighborhood of Aj and =1  in the interior of  Aj except in a small 
neighborhood of  the boundary of Aj. Thus r/~j is a smooth approximation 
to Z~j. The probability that the particle is found in Aj, at time t, ..... and in 
Az,. at time tN is given by a similar formula 4 to Eq. (1): 

4 Formula (2) may be thought of as modeling position measurements by an apparatus with 
a smooth response to the presence of a quantum particle, rather than the sharp response 
associated with Eq. ( I ). In particular, according to Eq. ( 1 ), given a position measurement at 
time t~ registering the particle in the cell ~J, an immediate subsequent measurement (t,_---, t,) 
will with probability 1 register the particle in the same cell, whereas according to Eq. (2) the 
subsequent measurement may register the particle in a neighborhlg cell. 
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Pq,(Aj,, t, ;...; Aju, tu) = (~, rla,,(q(t, )) rl~j,(q(t2))"'rl~ju(q(tN)) 

x q3jN(q(tu))...rla,(q(t2)) q~j,(q(t,))~) (2) 

In order that well-defined probabilities are obtained in this way it is 
necessary that Z j  r/~,(x)= 1 for all x. It is easy to construct such partitions 
and functions in higher dimensions by taking products of one-dimensional 
quantities. In one dimension consider a partition of R'  into intervals which 
are integer translates of A = [ - 1 / 2 ,  1/2]: zij= [ j -  1/2, j +  I/2]. Let fl(x) 
be an infinitely differentiable function > 0  if Ixl < 1/2 + e and 0 otherwise. 
For example, 

fl(x) = exp[ - (x + 1/2 + e) -2 _ (x - 1/2 - e) -2]  

= 0 otherwise 

if Ix[ < 1/2 + a  

The function fl,jj is a translate of ft. Define r/ ,~,(x)=fl3j(x)/[Zj fl~(x) 2] ,/2. 
Then q , j j (x )= l  f o r j - l / 2 + e < x < j + l / 2 - e  and = 0  for x < ~ j - l / 2 - e  
and x ~>j + 1/2 + e. Arbitrarily fine partitions may be obtained by replacing 
fl(x) by fl(bx), where b is large. Note that we may interpret r/~j(x) as 
the probability, given that the particle is "actually at the point x," that 
its position will be measured to be in A j, which is consistent with 

2 . Zj tlaj(x)= 1. This interpretation is useful when comparing with te classical 
joint distributions. 

Remarks. 1. Our discussion is formulated in terms of position 
measurements, although the same methods apply to joint multiple-time 
position and momentum measurements. 

2. In the case of the rescaled free evolution, F(,~(r)) converges 
strongly to F(Xo + ( r /m)~ ' )  and hence the large-scale limit can be taken for 
functions of position in any time order. 

3. Although our discussion of a quantum particle in a random poten- 
tial is formulated in terms of the functions q3(~(r)) and expressions such 
as (2), our methods apply to any functions F(~ where F is the Fourier 
transform of a bounded complex measure, in particular F =  1, and to 
expressions of the form 

(@, Ft(-~(r, ))- . .  FN(-~(r N)) F~v(~(rN)). . .  F't(_~(r,)) ~b) 

with 0 ~< r, ~< ... ~< rN. Hence we can deal with totally time-ordered expres- 
sions such as 

Ft (-~(r ,)) . . .  F ~  3(rN)) 

8 2 2 / 7 7 / 1 - 2 - 1 9  
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o r  

FN(~(rN))''" Fl(~( r  i )) 

Such totally time-ordered expressions are considered by Dell'Antonio t6) for 
functions of the momentum, where, however, he does not treat expressions 
of the required form (2). 5 

1.3. Strong and Weak Convergence 

We comment here on the difference between strong operator con- 
vergence for the free evolution, and weak operator convergence for the 
random potential evolution. In the case of the random potential, F(.~(r)) 
converges weakly to (T~F)(X o, ~) ,  where for any function f (x ,  p) on phase 
space, ( T j ) ( x ,  p) is the conditional expectation o f f (x ( r ) ,  p(r))  given the 
time-zero values ( x ( 0 ) = x ,  p ( 0 ) = p )  with respect to a classical stochastic 
process (x(r), p(r))  on phase space. In the case of the free evolution 

( T~ f ) ( x ,  p ) = f ( x  + ( r /m)p,  p) 

T o is a deterministic flow on phase space. Thus 

T~ = ( T~ r ~ G) 

This multiplicative property is not satisfied by the conditional expectation 
T, of an indeterministic process. 

Now if A,--+A weakly and A*A,- -+A*A weakly, it follows that 
At --+ A strongly. Indeed, 

II(A~-A)~I[ z = (r A * A , r  + (r A * A r  (Ag,, A,~J) -(A~b, A , r  ~ 0 

The multiplicative (deterministk) property of  T o converts weak convergence 
to strong convergence. 

1.4. Further Remarks on the Literature 

1. Spohn ~j91 and Dell'Antonio 16~ study the momentum observable 
for a quantum particle in a random potential. Only the average over the 
random potential is considered, whereas in the present study and ref. 12, 
results are obtained for sample random potentials, with probability one. 

2. Spohn c'91 studies the momentum observable only at one time and 
thus a momentum process is not obtained, whereas in the present study 

5 See ref. 12 for a discussion of Del l 'Antonio 's  analysis. 
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multiple-time correlations are studied. Dell'Antonio ~6~ considers totally 
time-ordered multiple-time correlations, but as mentioned in the preceding 
remark, these do not correspond to multiple-time measurements. In addi- 
tion, Dell'Antonio's analysis rests on several erroneous estimates. (See 
ref. 12, w 

3. The different character of the classical and quantum motion in a 
random potential arises from the effect of the interaction strength 2 on an 
individual scattering process. Classically, a weak potential will produce 
only a small deviation in the velocity. Quantum mechanically, the devia- 
tion is of order unity but with probability proportional to 22 , as follows 
from the Born approximation. This difference corresponds to the transition 
from the linear Boltzmann equation to the linear Landau equation as h ---, 0 
(Section 3.6). This point is discussed by Balescu (ref. 2, p. 599). 

4. The equations of motion for a particle in a potential V are 

dq( t ) dp( t ) 
dt =p( t )  and dt = F( q( t ) ) 

where F ( x ) =  -VV(x) .  Scaling the interaction strength by 2 replaces V by 
2 V and scaling space and time by 22 gives r = 22t and Q ( r )=  22q(2-2r). Set 
P(r) =p(2-2r ) .  The equations of motion become 

dQ(r_____~) = P(r) and dP(r____)) = 2 - 'F (2-ZQ(r ) )  
dr dr 

These equations are equivalent to leaving space-time unscaled but scaling 
the potential to 2V(2-2x). However, it is also necessary to consider the 
initial conditions Q(0), P(0), and in particular the communication relations 
[Q(0), P(0)] =i22h. The effective Planck constant 22h tends to zero as 
2 ~ 0 and hence this is a type of classical limit h ~ 0. The classical limit of 
quantum theory as an h ~ 0 limit has been studied in various forms in the 
literature. This limit is not precisely defined, as the behavior of operators, 
wavefunctions, and parameters needs to be specified and depends on the 
physical basis for the observed classical behavior. A different version of the 
classical limit from the one considered here is given by HeppJ~t) The weak- 
coupling limit for a classical particle in a random potential (classical 
Lorentz gas) is studied by Kesten and Papanicolau I]4~ and Diirr et aL 17~ 

N o t a t i o n .  Constants will be absorbed into the definition of the 
Fourier transform where convenient to yield simple expressions. 
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2. FREE E V O L U T I O N  ON A L A R G E - S P A C E - T I M E  SCALE 

In this section we shall use Eq. (1) for the joint distribution of multiple- 
time position measurements.  We shall consider the free evolution of a 
quan tum particle in R", in rectangular boxes, and on tori. The initial state 
of  the particle is given by the wavefunction ~b, translated by the rescaled 
amount  X o = 22Xo . We shall take the initial state to be ~ and translate the 
observables by Xo = 2-2Xo . Then the initial position observable is q + Xo 
and at time t the position is q + Xo + (t/m)~. The rescaled position observ- 
able is then .~(r )=2-2q+Xo+(r /m)~,  which converges strongly 6 to 
Xo+(r /m)~  as 2--+0. More precisely, 3 ( r ) ~  converges in the Hilbert 
space norm to [Xo+(r/m)~]~b on a dense set of  analytic vectors ~ for 
Xo + ( r / m ) ~ ,  for example,  on shifted Gaussian wavefunctions, and hence, 
since [ X o + ( r / m ) ~  ] is essentially self-adjoint on the finite linear span 
of such wavefunctions, for every bounded measurable  function which is 
continuous except on a closed set of  Lebesgue measure zero, F (~( r ) )  will 
converge strongly to F(Xo+(r/m)~)/8~ Furthermore ,  if F~ ..... Fu are 
such functions, then F~(3(rt)). . .Fs(~(rN) ) will converge strongly to 
F~(Xo + ( r t / m ) ~ ) . . .  FN(Xo + (rs/m)~).  Consequently the joint probabil-  
ity [ Eq. ( 1 )] will converge as 2 --+ 0 to 

(~, x.,,(Xo + (r ~/m).~).." X~,.(Xo + (rN/m).#)-. "X.,,(Xo + (r~/m)#)~,) 

= (r Z.,,(Xo + (r, hn).~)... X,,,,(Xo + (rulm)~)r 

= f dp I~(P)12 Z.,,( Xo + ( r , /m)p) . . .  X.~,,.(Xo + ( ru /mlp)  (3) 

Equation (3) is just the classical probabil i ty that a particle will be found in 
A~ at time rt,..., and in AN at time rN, given that the particle follows the 
trajectory X o +  ( r /m)p  with probabil i ty density I~(P)I-'. Thus the quan tum 
joint distribution of multiple-time position measurements  in the limit of 
large-space-time scaling may be interpreted by a classical probabil i ty dis- 
tribution on classical particle trajectories. 

Remark. Consider a wavefunction which is a coherent superposi- 
tion of two wavefunctions translated by different amounts  X 1 and )(2: 
al U(2-2Xt) ~, +a2U(2-2X2)~2 . Comput ing  the joint distribution for 
multiple-time position measurements  as above, we obtain a sum of 
terms from each of the wavefunctions and cross-terms of the form 
(t~t, U(2-2(X:-Xm))A~2), where A is an opera tor  depending on the 
rescaled position ~ ( r )  and A~b 2 converges as 2 - ,  0. The cross-term is then 

A~. converges strongly to B if tlA~.~b- B~ JI--' 0 for all wavefunctions 1,0. 
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seen to tend to zero since U(x) converges weakly 7 to zero as x ~ oo. To 
show this, suppose two wavefunctions r and ~b2 are zero outside some 
bounded set. Then ~l and U(x)~b 2 are or thogonal  for x sufficiently large�9 
Since any wavefunction may  be approximated  by such q~, it follows that 
lim . . . . . .  (~bl ,  U(x)q~2) = 0 for all ~b~, ~b 2. Hence a mixture ofqJ, at X, and ~'2 
at X 2 results. 

2.1 F r e e  E v o l u t i o n  on  a H a l f - L i n e  

The large-scale limit for a free quan tum particle restricted to the half- 
line [0, oo) again leads to classical particle trajectories, which in this case 
reflect back from the origin. By using the method of images, the free evolu- 
tion on ( - o o ,  co) previously studied may be used in the computat ions.  

M e t h o d  o f  I m a g e s .  Denote  by )fro the Hilbert space L2([0, ~ ) , d x )  
of wavefunctions of the particle and let # g = L 2 ( ( - c o ,  ~ ) ,  dx). The free 
evolution on #g is generated by the Hamil tonian H = ~ 2 / ( 2 m ) .  Any 
wavefunction in the domain of H is continuous and has a continuous first 
derivative. On smooth  functions, H = - h 2 / ( 2 m )  dE/dx 2. The sub-Hilbert  
space ~ 0 c # g  of odd functions is invariant under the free evolution 
e x p [ - i ( t / h ) H ] .  Let A be the unitary map  of ~ onto ~o given by 
(A~k)(x) = sign(x)2-1/21p(lxl).  The inverse unitary map  B of ~0 onto #go 
is ( B ~ ) ( x ) = 2 ' / 2 ~ ( x ) .  A continuous one-parameter  group of unitary 
operators  on #go may  be defined by B e x p [ i t H ]  A = e x p [ i t H o ] ,  which 
defines the self-adjoint opera tor  H o on Ygo. The opera tor  H o is just 
-h2/(2m) d2/dx 2 with the Dirichlet boundary  condition f ( 0 ) = 0 .  [ I f  the 
even subspace of #g had been used, then the Neumann boundary  condition 
df/dx(O)=O would have resulted, with the same conclusions applying.]  
The position opera tor  qo on ~'~ is multiplication by x and qo = B Iql A. 
Thus 

q o(t) = exp [ i tHo ] q 0 exp [ - i tH 0 ] 

= B exp[ i tH] Iql exp[  - i tH] A = Blq(t)l A 

The rescaled position opera tor  is ~ o ( r ) =  22qo(2-2r)  and 

Zcjl(,.,~O( TI ) ) ' ' '  X.4~,(~D(TN)}''" XdI(~O(TI )) = B.~A 

where 

= Z~,( I~(r ,  )1)""" X~,,,( [z?(r N)I ) . . .  X,:,,( I~(r l  )1) 

7 A;. converges weakly to B if (~'l. A~b2) --' (~b). B~//2) for all wavefunctions ~'1. ~'2. 
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We thus obtain for the joint distribution rescaled multiple-time position 
measurements 

Pe,(d,, r, ;... ; AN, rN) = (A@, o~A@) 

Now write A@=2-1/z(~b' -~") ,  where @'(x)=@(x)  if x e R  + and zero 
otherwise, and t k " (x )=~k( -x )  if x ~ R -  and zero otherwise. Since the 
operator  ~ is even under x ~ - x ,  the above expression may be rewritten 
as 

(V/, ~@')= (@", ~@') (4) 

Suppose now that the particle is translated to some large-scale point 
3(0>0.  Then ~k' is replaced by U(2-2Xo)~, ' and ~b" is replaced by 
U( -2-2Xo)~b  ". We may now use the preceding remark to conclude that 
the cross-term in Eq. (4) tends to zero in the large-scale limit 2 ~ 0. s We 
finally obtain for the limiting joint distribution of rescaled multiple-time 
position measurements 

(if', ~ ' )  (5) 

where in the expression for ~ ,  I-~(z)[ is replaced by [Xo+(r/m).~ 1. The 
presence of  the absolute value has the effect of  reflecting the straight-line 
trajectories at the origin. 

2.2 .  F ree  E v o l u t i o n  on a C i r c l e  

We shall identify the Hilbert space ~ of  wavefunctions of  a particle on 
a circle of circumference L/22 with L2([ - -2-EL~2,  2 - 2 L / 2 ] ,  dx) and thus 
consider it as a sub-Hilbert space of  ~,W, = L : ( ( - o ~ ,  ~ ) , d x ) .  As large- 
scale space coordinate (angular variable) on the circle we shall take 
exp[i2rr2Ex/L], which traverses the unit circle in the complex plane as x 
varies from - 2 - 2 L / 2  to ,~-2L/2. The large-scale quantum mechanical posi- 
tion operator on ~ is then the unitary operator .~=exp[i2r t22qJL] ,  
where q;. is multiplication by x on ov/~a. The momentum operator  :~  
generates translations around the circle: ~ = ( h / i ) d / d x  with periodic 
boundary  conditions at - 2 - 2 L / 2  and 2-2L/2.  Then 

exp[ i( a/h ),~x] ,~ exp[ - i( a/h ) ~ ] = exp[ i 2rra2 2/ L ] .~ 

s If the particle is not translated by a nonzero macroscopic amount, so that it is "at X= 0,'" 
then @' is to be replaced by A@ in Eq. (5). 
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Equivalently, . ~ [ ~ - ~ a = t ~ + 2 n h 2 2 / L .  We may  then compute  the time- 
evolved large-scale position operator:  

-~a(r) = exp[ i t /(h2m)~]] -~a exp[ - it/(h2m)t~ 2 ] 

= ~ exp[ i t / (h2m){ .~[ '~ .~}  2] exp[ - i t / ( h2m)~]]  

= exp[ it(2rth22/L)2/(h2m)] ~Aa exp[ i2n22t / (mL)~] 

= exp[ i(2n) 2 h22r/( 2mL 2) ] ~ a exp[  i( 2n/L )(r/m) ~a] 

where we have substituted 22t = r. We note that, as in the previous cases, we 
may translate the initial state of the particle a round the circle by the amount  
2-2Xo . Shifting this translation to the observables results in a change in the 
last factor in the expression for .~,(r) to exp[i(2~/L){ Xo + ( r / m ) ~ }  ]. 

In order to study the limit 2 ~ 0, it is convenient to make  the follow- 
ing convention. Let E~. be the projection in J g  onto ;,ugh. If the wavefunction 
of the particle is in the or thogonal  complement  of  .~ff~, we say the particle 
is not on the circle and assign its large-scale position on the circle to be zero 
(i.e., not on the circle). In this way we may consider ,~ ( r )  to act on J f  and 
replace the formula for ~ ( r )  by 

~ r ) = exp [ i(2re) 2 h2 Zr/(2mL 2 ) ] exp [ i(2n). 2/L) q ] 

x exp[i(2zc/L){ Xo + ( r / m ) ~ }  ] E~. (6) 

where q is the position opera tor  on 5~. It is now an easy mat ter  to study 
the limit 2 ~ 0. The first two factors in the expression for 22a(r) converge 
strongly to the identity operator ,  as does Ea. Now let @ ~ o~g~o. For  2 < 2o, 
~ b ~  and furthermore if l a [ < ( 2 - Z - 2 o 2 ) L ,  then exp[ i (a /h)~] t~= 
exp[i(a/h)~] ~, since ~ generates shifts on [--,~.-2L, ,'].-EL] with periodic 
boundary  conditions and ~ generates shifts on R. Hence ~  
exp[i(27r/L){Xo + ( r / m ) ~ }  ] @. Such wavefunctions ~b, for all 20, are dense 
in ~ .  Thus ~ converges strongly to exp[i(2zr/L){Xo + ( r / m ) ~ }  ]. As in 
the previous discussions, this expression leads to joint large-scale multiple- 
time position measurements  given by classical particle trajectories on a 
circle of  rescaled circumference L, starting at Xo and moving with velocity 
p/m, where the probabil i ty density for p is I~(p)l  2. 

Translat ion on the circle by the large-scale amount  X is given by 
Ua(2- ' -X) = exp[. i (2-zX/h)~] on 3r We extend this to 3f  ~ by the conven- 
tion that if the particle is not on the circle, it is not translated. Thus on ~", 

Ua(2 -2X) = exp[ i (2 -2X/h)~]  Ea + ( 1 - Ex) 
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Suppose IXl < L/2 and let the wavefunction t/J have support in [ - K ,  K].  
Then 

U:~(2-2X)~ = exp[ i(2-2X/h)~.] qJ = exp[ i(2 -2X/h)~] ~b 

if K +  2 - :  IX] < 2-2L/2. We now see that a coherent superposition of two 
compact support wavefunctions r ~2 translated by different macroscopic 
amounts X~, X2, where Igjl <L/2, IX~-X21 <L/2, gives cross-terms 
which tend to zero as 2 ~ 0 by the weak convergence to zero discussed in 
the remark of Section 2. This then extends to all wavefunctions in .~. 
Hence a mixture of ~, at X, and ~2 at X 2 results. 

2.3.  F ree  E v o l u t i o n  on an I n t e r v a l  

The method of images may again be used to obtain the time evolution 
of a quantum particle restricted to an interval [0, 2-2L/2]  in terms of the 
evolution on a circle, which is given by periodic boundary conditions at the 
endpoint of [ - 2 - 2 L / 2 ,  2-2L/2]. Let ~ ,  o = L-'([0, ) .-2L/2],  dx) and, as 
in the previous discussion of the half-line, consider the unitary map A~ of 
~ . , o  onto the odd subspace ~ . 0  of J~;=L2([-2-ZL/2,2-2L/2],dx)  
given by (A ~ ~)(x) = sign(x) 2 -  l/2~(ixl) and the inverse map B~: (B~ ~)(x) = 
21/2~(X). The self-adjoint operator H~. o on :,~ff~, o is defined by exp[itH~.o] 
= B~ exp[it/(h2m)~]] A~, where ~ ] / ( 2m )  is the Hamiltonian on the circle. 
A wavefunction in the domain of ~ is necessarily continuous with 
continuous first derivative (and periodic at _+~-2L/2) and hence if 
~b �9 ,~ff~. 0, it follows that ~b is zero at x - - 0  and furthermore, due to the 
periodic boundary conditions at the endpoints +2-ZL/2, also at the 
endpoints. Thus B ~  �9 ~'.~. D is zero at x = 0  and x = ,~-2L/2. In this way we 
see that H~,o is -(h2/2m)d2/dx 2 with Dirichlet boundary conditions at 
x = 0 and x = 2-2L/2. (In a similar way the even subspace of ~ gives rise 
to Neumann boundary conditions at x = 0 and x = 2-2L/2.) The discussion 
now proceeds along similar lines to the case of the half-line. Thinking 
of the interval [0, 2-2L/2]  as the semicircle of circumference 2-2L/2 
centered at the origin and contained in the upper-half complex plane, we 
take the rescaled space coordinate exp[i2g22x/L] (see Section 2.2). Then 
ij~, D = B~f(.~)A ~, where f(z) = ~z  + i [3-[ is continuous, and .~. o(r) = 
B~f(~ A~. As in the previous section, if the wavefunction of the par- 
ticle is the orthogonal complement of 9ff~. D in WD (Section 2.1 ), we say the 
particle is not in the interval and assign its position to be zero. As in 
Section2.2, we extend ~;, ,o( ' t ' )  to  an operator on  "Y~D by ~ , D ( r ) =  
B:~f(,%,(r))A~,8~, where ~ is the projection in ,~o onto ~ , o .  We may 
replace A~ by A, B~ by B (Section 2.1), and take ,~(r)  as in Eq. (6). It 
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follows that -~a, n(r) converges strongly to Bf(exp[i(2rc/L)(Xo + (r/m),~')])A. 
As in previous discussions (Sections 2.1 and, this formula leads to classical 
trajectories on the interval. The presence of the function f has the effect of 
reflecting the trajectories at the endpoints of the interval. (The presence or 
absence of cross-terms depending on whether the particle is "at X =  0 or 
X= L/2" or at a macroscopically interior point of the interval follows a 
similar discussion to that in Section 2.1.) 

Remark. The preceding one-dimensional constructions extend 
immediately to higher dimensions, using the fact that the Hamiltonian 
is a sum of mutually commuting and independent one-dimensional 
Hamiltonians, and thus each component of the large-scale position 
operator evolves as in the one-dimensional case. We may thus obtain the 
joint distribution for large-scale multiple-time position measurements in 
terms of classical geodesic trajectories on cylinders, tori, and hyper- 
rectangles. 

2.4.  Free  E v o l u t i o n  on a L a t t i c e  

Associated with a quantum particle on a one-dimensional lattice with 
spacing I is the Hilbert space of wavefunctions ~ = 12(Z). The unitary shift 
operator U is defined by (U~b) (n)=@(n-1)  and the lattice Laplacian is 
A = I - 2 [ U + U - ' - 2 ] .  The Hamiltonian is H = - h 2 / ( 2 m ) d .  The posi- 
tion operator q is given by (q~k)(n)=nl~J(n) and q(t)=exp[(it/h)H]q 
exp[ -(it/h)H]. Then dq/dt =h/(ml)(i/2)[ U -  U - l  ] = (1 /m)~,  where the 
momentum operator ,~ = (h/l)(i/2)[ U -  U - t  ]. Note that d,C,~dr = 0, so the 
momentum is conserved and q(t)=q+ (t/m)~. Furthermore, if the initial 
wavefunction is shifted by ,1.-2)(o and this is transferred to the observables, 
then q( t)= 2-2Xo + q + ( t/m)~. The large-scale position operator is 

O2(r) = 22q(2-2r) = A2q + Xo + ( r / rn)~  

The operator ~ is bounded. Indeed, Fourier transformation is defined by 

~(p) = ~ ~(n) exp[ -inp] 
s t  

O(n) = (2~) - j  dp ~(p) exp[inp] 

and 

UA~(p) = exp[ - ip] ~(p) 
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Hence 

Landau 

A 

H~(p)  = h2/(mlZ)[ 1 - cos p ]  ~(p)  

~A (p) = (h/l) sin p~(p)  

so - ( h / l ) < ~  <~ (h/l). Then -~(r) converges strongly on the domain  of q to 
the bounded opera tor  X o + ( r / m ) ~ .  Hence, observed on a large space-time 
scale, the particle moves on a straight-line trajectory X o +  (r/m)(h/I) sin p 
with probabil i ty density 

(2~z) -]  [ I~b(p)lZ + [~ ( s i gn (p ) r c -p ) [  2] dp, -zc/2<~p<~r~/2 

The max imum speed is h/hn. 

R e m a r k .  It is interesting to note that the Bessel function identity 

2n J,,(t) = t[J,,_ l(t) + J,, + ((t)] (7) 

is an immediate consequence of the opera tor  identity q ( t ) = q + ( t / m ) ~ .  
Indeed, taking h = m = / =  1, and denoting by 6o the wavefunction which is 
1 at n = 0 and 0 otherwise, 

(exp[itH] 60)07) = exp[ i t ] (  --i)" J,,(t) (8) 

and since q6o = 0, we have 

O=q( t )exp[ i tH]  Cio= [ q + t ( i / 2 ) ( U -  U - ' ) ]  exp[i tH]~ o (9) 

Equations (8) and (9) give the identity (7). 

Remark. The kernel of the free evolution on the lattice is given by 
Bessel functions [Eq.  (8)].  In the cont inuum R the kernel is uniformly 
bounded by Ct -t/2. A uniform bound Ct -~/4 for the lattice kernel was 
obtained in ref. 12, Appendix C, but the best uniform bound has the form 
Ct I/3 (27) 

2.5. U n i f o r m  Grav i ta t iona l  Field 

A uniform large-scale gravitat ional field in R" is described in terms of 
the large-scale coordinate  X by the potential V ( X ) = m g X  and hence in 
terms of the coordinate  x = 2 - 2 X ,  V(x)=m22gx.  Thus in this case the 
interaction strength 22g is scaled in the same way as the space-time 
coordinates. The Heisenberg equations of mot ion associated with the 
Hamil tonian H = 1 / ( 2 m ) ~  2 + 22mgq are dq(t)/dt = ( i /m).~(t)  and 
d~(t)/dt  = -22rag.  Then ~ ( t )  = ~ - 22mgt and q(t) = q + ( t / m ) ~  - 
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22gt2/2 + 2-2Xo, where we have included a large-scale displacement by Xo. 
Hence ~ ( r )  = ~ - mgr and .~(r) = 22q( ) .  - 2 r )  = ~t2q + ( r /m)~  --gr2/2 + Xo, 
which converges to X o + ( r / m ) ~ - g r 2 / 2 .  In higher dimensions with the 
gravitational field in the g direction we have ~ ( r ) = ~ - m g r g  and 
.~( r ) = Xo + ( r /m ) ~ - g( r2 /2 ) s The classical trajectories are thus parabolas. 

2.6. Slowly Varying Potentials 

A quantum particle subjected to a slowly varying potential (one which 
varies on the macroscopic scale of the form V(X) = V().2x) should, in the 
large space-time limit 2 ~ 0, be described by trajectories ~ F~(Xo, ~) ,  
where X( r ) =  F~(x, p) is the classical trajectory satisfying 

dX(r) 1 
p(r) 

dr m 

dp(r) 
= V V(X(r)) 

dr 

with initial conditions X(0)--x,  dX/dr(O)=p.  This was shown in Sec- 
tion 2.5 for a slowly varying gravitational potential. The calculation for the 
harmonic oscillator potential V ( X ) =  1/2kX2= 1/2)takx 2 is also easily done. 
The Heisenberg equations of motion are 

dq( t ) 1 
~ ( t )  

dt m 

d~(  t ) ).4kq( t ) 
dt 

o r  

d~(t)  1 
~( r )  

dr m 

d~(r )  
k_~(r) 

dr 

with solution 

.~(r) = -~ cos(~or) + 
sin (r.r) 

mo9 
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Substituting .~ = 22q + X o gives, in the limit 2--* 0, 

3 ( r )  = X o cos(cot) + ~ sin(cot) Fr(Xo, ~)  
mo) 

A related approach with a different scaling leading to classical behavior is 
given by Hepp.~ 1 ~ 

2.7. Large-Space-Time Observation of Scattering 

The quantum mechanical scattering states of a particle in R ~ are those 
wavefunctions q/• which for large times behave as free particles: 

Ilexp[-i(t/h)H] ~O +_(~)-exp[-i(t/h) no]qbll ~ 0  (I0)  

as t--* ___c~, where H is the total Hamiltonian and Ho is the free 
Hamiltonian 1 / (2m)~  2. The Moller wave operators s are defined by 
g2• and the S-matrix S by s Note that O_+ are 
isometric: 1112_+~bll = II~bll. From Eq. (10) exp[i(t/h)H] e x p [ - i ( t / h ) H o ]  
converges strongly to f2+_ and exp[i(t/h)Ho] exp[-i(t/h)H]s con- 
verges strongly to the identity operator  as t---, _ ~ .  Let 

~ , ( r )  = 2 2 exp[i(A-2r/h)H] q exp[ - i(2-2r/h)H] 

denote the large-scale position operator  evolved with respect to the total 
Hamiltonian and .~(r), as in preceding sections, evolved with respect to the 
free Hamiltonian. Let F(x) be a bounded measurable function which is 
continuous except on a closed set of Lebesgue measure zero. Then on the 
scattering states, if r < 0, as 2 --* 0 

F(~163 =exp[i2-'-(r/h)H] e x p [ - i 2 - 2 ( r / h ) H o ]  F(.~(r)) 

x exp [ i2 - 2(r/h) H o ] exp [ - i2 - 2( r/h ) H ] g-2 

--, [2 F((r/m)~) 

It follows that if r~ and r2 are negative, 

F l{~H(r  l )) F2(ZgH{ r2))-Q_ 

= Fl(-~u(r,))[F2(~ - -  g 2 _ F 2 ( ( r J m ) , ~ ) ]  

+ Fl(-~u(r ~ )) s _ F2((r2/m)~ ) 

-o s  Fz((r2/m ) ~) 

=s F2( ( r2 /m)~  ) 
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and similarly for a product  of any number  of such functions Fj. In a similar 
manner  we conclude that  if rl,..., r ,  are < 0  and r ,+~ ..... rN are >0 ,  then, 
as 2 4 0 ,  

FN(~ ' ' '  Fl( . .~n(rl))(2_ ~ Y2+FN((ru/m)~ ) 

�9 . . F , + l ( ( r , + l / m ) ~ ) S F , ( ( r , / m ) ~ ) . . . F l ( ( r t / m ) ~ )  (11) 

Using Eq. (1) for large-scale space-time measurements ,  and writing the 
equat ion in the form 

P , ( A t ,  rl ;...; A N ,  "CN)= I[~AN(,-~H(rN)) " ' ")~dl( ,~H(~' l  )) 1~r (12) 

we take r] < .-. < r , < 0 < r k §  . . .  < r N  and obtain in the limit 2 4 0 ,  
from Eq. (11 ), for an incoming scattering state ~b = f2_ ~b, 

Pa_~,(Ai, rl ;...; AN, rN) 

= IIZ~N((rN/m)~)'" "Z,j,+,(('rk + i/m).~) 

x Sxa,.((rk/m)~). .-  Xj , ( ( r t /m) ,~ ' ) r  IIe (13) 

since f2+ is isometric. We see that  P,_,(A~,r~;. . . ;du,  ru)=O unless 
(A~, r , )  ..... (Ak, r , )  contain a straight-line trajectory (r/m)p with p in the 
support  of  ~b, and ( d k §  r , + ] )  ..... (AN, ru)  contain a straight-line trajec- 
tory (r/m)p' with p '  in the support  of  Sxjk((rk/m)~). . .Xa,((r/m)~)e}.  
However,  the expression (13) contains quan tum mechanical  interference 
terms and does not have the form given by the scattering of classical 
particles. In particular,  summing over all A in the parti t ion, 

P a _ r  rl;...; Au,  rN) r Pmr +l ,  r* + l ;...; A N, rU) 
�9 41...., Ak 

If, however,  the incoming state is sufficiently concentrated about  the 
incoming m o m e n t u m  Po (in relation to the fineness of the parti t ion),  then 
at each time rj < 0 only the one A ~ containing (r jm)po will give a non-zero 
probability.  (That  is, to the accuracy of the parti t ion, there is only one 
incoming trajectory (r/m)po. Fur thermore ,  

X4"~ ((rkhn)~)  " " Z~:,((r~/m)~)r = r 

and so the probabil i ty density of  observing an outgoing trajectory (r/m)p' 
is I (Sr  )12. (In order to relate this to the s tandard cross-section formula, 
it is necessary to average the probabil i ty density over the wavefunctions ~b 
in the incoming particle beamJ  24~) 
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2.8. Many Particles 

The analysis leading to Eq. (3) carries over unchanged to the case of 
N quantum particles moving in R'. If the N-particle wavefunction is 
~(x (~) ..... x(m), then the probability of finding particles in macroscopic 
space-time regions is given by N straight-line trajectories X (j)(r) = (r/m)p(J) 
distributed according to the probability density I~(p (~) ..... p(m)l-'. If, 
furthermore, the j,h quantum particle is translated by the macroscopic 
amount X(o j), then the trajectories are XU)(r)=X~J)+ (~/m)p (j) with the 
above probability density. If the quantum particles are uncorrelated, the 
wavefunction factorizes, ~(x ~l) ..... x ~u)) = ~k(I)(x(l)) .-- ~OIU)(x(m), and con- 
sequently the joint probability density of the classical particle trajectories 
also factorizes. Thus the trajectories are uncorrelated. 

A coherent superposition of wavefunctions translated by different 
macroscopic amounts (X(o ') ..... X~ N)) and (X~ ~)', .... X(o u)') will, in the large- 
scale limit 2 ~ O, lead to a mixture as in previous discussions due to the 
cross-terms tending to zero: 

u,,)(~-2[ X,o,)_ X,o,)'])| ... | U"~>(~-2[ X'oN)-- X~oN)']) 

tends weakly to zero if at least one X(o j ) -  X(o j)' is nonzero. 
If the particles are bosons or fermions, the wavefunction must be 

symmetric or antisymmetric, respectively. If the particles are translated by 
different macroscopic amounts, then symmetrization or antisymmetrization 
leads to a mixture due to the cross-terms tending to zero. Furthermore, for 
properly symmetrized observables each permuted wavefunction will lead to 
the same joint probabilities. Consequently for particles initially at different 
macroscopic points, Bose or Fermi statistics do not lead to any modifica- 
tion in joint multiple-time position probabilities. In particular, this is the 
case if the particles have an initial distribution of macroscopic positions X| 
which is absolutely continuous with respect to Lebesgue measure (i.e., 
given by a density function), since the probability of two particles being at 
the same point is zero. For example, suppose the j th  quantum particle is 
initially in the (mixed) state SU)= Y.k C~/) S~,,, where S W, is the pute state 
determined by the wavefunction ~b~k j). Then the momentum distribution is 
given by the density gU)(p)= ~.k c~/) Iq~k!~(P)l 2. Suppose the initial distribu- 
tion of the macroscopic position of the j th  particle is given by the density 
h(J)(X~oJ)). If the particles are uncorrelated, then S =  (~)~v_~ S(j) and the 
trajectories XUl( r ) = X~oJ) + ( r /m ) f f  j~ are uncorrelated. 

A similar discussion applies to motion in the previously discussed 
geometrical regions. A quantum particle on a circle of circumference L with 
momentum distribution given by the density g(p) and initial macroscopic 
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position distribution given by the density h(Xo) has moments  of  the 
position operator  at macroscopic time r, in the large-scale limit, 

( U " )  = f dXoh(X o) ~ dp g(p) exp[ in(2rc/L)(Xo + (r/rn)p)] (14) 

Denote by gr  the probability measure on the unit circle determined by 
these moments:  

( U " )  = f]" d#~( O) exp[ inO] 

The moments  r E q . ( 1 4 ) ]  for n q : 0  converge to zero as r ~ o o  by the 
Riemann-Lebesgue lemma. These limiting values are equal to 
~2"dp(O) exp[inO], where p is the uniform distribution d# = ( 2 n )  -~ dO. It 
follows 9 that the probability pr(~t) of  finding the particle on any arc ct of  
length [~] on the circle converges to p(ct) = 10t[/(2n). If we now consider N 
uncorrelated quantum particles, each in any state S (j) with distribution 
h(J)(X(oJ)), then in the large-scale limit, as r-- ,  oo and for sufficiently large 
N, the density of  particles will exhibit very small fluctuations around the 
uniform density. (The discussion can be further extended to the case where 
g depends on both p and Xo.) 

2.9. A Quantum Counting Process 

Here we discuss an alternative approach to position measurements on a 
free quantum particle which corresponds to setting up counters in various 
regions A j, j = 1 ..... J, and observing the times at which each counter clicks. 
A good exposition of  the general approach developed by E. B. Davies may 
be found in the article by Srinivas and DaviesJ 21) We shall show that in a 
large-space-time limit, the quantum counting process goes over to the 
classical counting process associated with particles moving on the straight- 
line trajectories X o + (r/m)p. 

To the counter in the region Aj is associated a counting rate "super- 
operator" Ja,  acting on density matrices p. We shall take Ja,  of the form 

2 A% P = a Xa,(q) PXa,(q) 

9 The continuous functions exp[#10] are closed under multiplication and complex conjugation 
and separate points of the circle. By the Stone-Weierstrass theorem, finite linear combina- 
tions of such functions are dense in the supremum norm in the set of all continuous 
functions on the circle. Thus ur-.,u weakly, and hence #~( B) --. #( B) for all Borel sets 
satisfying p(0B)=0 (ref. 23, Theorem 1.I.1 ), in particular for B an arc. 
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The total rate opera tor  is 

J J 

R =  ~ y * j ( I ) = a :  ~ X,~j(q) 
j = l  j = l  

(where J * j  is the dual of  Jnj, acting on the observables).  
In the absence of counters the density matrix evolves according to the 

Hamil tonian evolution 

exp[ - i ( t / h ) H ]  p exp[  i ( t / h ) H ]  

where H =  l / ( 2 m ) ~  2. In the presence of the counters the evolution of the 
density matrix to time t in the case that  no counters click in the time inter- 
val [0, t) is given by S , p / T r ( S , p ] ,  and the probabil i ty for this case to 
occur is T r [ S ,  p] .  The "superopera tor"  S, acts on p by 

where 

S, p = exp[ - tK]  p exp[  - tK*  ] 

K = (i/h) H + R/2  

K*  = - (i/h) H + R/2 

If 0 ~< t i ~ " ' "  ~ t~< t, the probabil i ty density that  the counter  in A j, clicks 
at time tl,..., and the counter  in Ajl clicks at time tt, and no counter  clicks 
in the rest of the interval [0, t) is 

P p( t l , A j, ;...; t t, A j,) = Tr[  S,_  , J~ j  S ,,_ ,_, J~j,_ . . . aC~j: S,: _ ,~ J~j~ S,, p ] 

(15) 

If the state of the particle is given by the wavefunction ~b, the density 
matrix p is the projection onto if, 

in the Dirac bra-ket  notation. In this case 

where 

~J, = exp[ - tK  ] 

and 
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where 

Consequently, the probability density (15) is then 

Pc,(t~, Aj,;...; t~, Aj,)= [l~b'll ~ 

where 
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~k' =rr t exp[ --(t - h)K] Za,,(q) exp[ - ( t t -  tl_ i )K] ... 

x exp[ - ( t 2  - tl )K] gaj,(q) exp[ - t ,  K] 

We shall develop a macroscopic (large-space-time) form of the above 
analysis by replacing the counting rate superoperator J,~) by ' ;' J~aj, where 

Jaaj P = 22rr2X~j(Q) px,~,(Q) 

where Q = 22q + X0, in which case the total rate operator R is replaced 
by R ~, where 

J 
R'~=22~ 2 xJ,(Q) 

j = l  

The probability density with respect to the rescaled counting times r~ ..... r~ 
is then 

Pv,(rl, d j, ;...; rt, dj,; [0, r ) ) =  116~ !12 

where 

~k~ = a / exp[iA-2r/hH] exp[ - 2  2(r - r / )K] 

x Z~j,(Q) exp[ - 2 - 2 ( r / -  rl_ 1)K] ... 

x Xaj,(Q) exp[ - 2 - 2 ( r 2  - r t}K]  X~,,(Q) exp[ - 2 - 2 r i K ]  i# 

The wavefunction ~ converges in Y# as ;t---, 0 to ~bo, where ~0 may be 
computed in the following way. An expression such as 

exp[ ). -ZrkK]x.~,,(Q) exp[ - 2  -2r~. K] 

is written in the form 

i Wkx_~j, (Q(rk))(W~)-i  

where 

W~. = exp[2-2rkK ] exp[ - i 2 - 2 r k / h H  ] 

822/77/I-2-20 
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Now X,j,k(Q(rk)) converges strongly to Xa,,(Xo+(rk/m)~) as 
Furthermore,  W~ converges strongly to 

2--*0. 

j = l  

In order to prove (16), expand W~ in the norm convergent series 

W~.= 2-" dsl ds2.., ds,,3~(s,,)...~.a(sl) (17) 
n ~ 0  

where tea(s) = a 2 Z}= 1 x~,(Q(s)). Now .~(s)  converges strongly as 2 --* 0 to 
~o(S) = a'-YJ= 1Xa,(Xo + (s/m)N). Furthermore,  IIRa(s)ll ~< a z for all 2 and 
s, which implies that the series expansion (17) converges uniformly in 2. 
Hence we may interchange the sum over n with the limit 2---, 0. The com- 
mutativity of ~o(s) for all s then leads to (16). Similarly 

(W~.) - t  = exp[ i2 -2rk/hH ] exp[ - 2  - ' r , K ]  

converges strongly to 

exp - 2 - 1 a  2 ~. kdsx~jk(Xo+(s/m)~) 
j = I  

Taking into account the commutativi ty of all factors in ~'0, we obtain the 
expression 

~ , o = a l e x p  - 2 - 1 a  2 y'. dsx~j(Xo+(s/m)r ~) 
j = l  

x x~j,(Xo + ( r d m ) ~ ) - .  "z~,, (Xo + ( r~/m)r  ~, 

Hence in the limit 2 ~ 0, Pu,(r~, Aj.;...; rt, zljr; [0, r)) converges to 

f dp [~(p)12a2'exp - a  2 ~ dsx~j(Xo+(s/m)p 
j = l  

x Z,jjr(X 0 + (r/m)p)...Z~,,(Xo + ( r~/m)p)  

which are the corresponding classical counting probability densities for a 
particle moving on a straight-line trajectory Xo + (r/m)p with probability 
density I~(p)l 2. 
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3. A Q U A N T U M  PARTICLE IN A R A N D O M  POTENTIAL 

The large-space-time, weak-interaction limit is taken for a quantum 
particle moving in R"(v>~ 3) in the presence of a random field v(x). The 
rescaled time and space variables are r = 2 2 t  and .~ =22q, and the inter- 
action strength is 2. Formula (2) shall be used for the large-scale multiple- 
time position measurements with r replacing t and 02 replacing q, and the 
limit 2 ~ 0 will be taken using the Dyson perturbation series--which may 
be controlled for small r and Gaussian random fields v(x). In place of the 
straight-line trajectories, of Section 2, the trajectories describe a particle 
moving with constant speed in straight lines between random jumps in 
direction. In the limit 2 --* 0 the joint distribution for multiple-time position 
measurements is thus described by a classical stochastic process. 

With probability 1 with respect to the random field, the stochastic 
process obtained does not depend on the particular sample random field, 
but only on the ensemble value of the covariance of the random fields. 

In this section, for notational simplicity, explicit formulas will be 
develop for P,(A~, r~; A2, Z'z). The extension to more general multiple-time 
position measurements leads to expressions of the same general form. 

3.1. Dyson Per turbat ion  Series 

A. Consider a Hamiltonian H=Ho+2V, where Ho = 1/(2m)~ 2 and 
V will for the moment be supposed bounded. The unitary operators 

satisfy 

where 

W(t) = exp[ (it/h) HI exp[ - (it~h)H0] 

dW(t)/dt = (i2/h) W(t) V(t) 

V(t) =exp[(it/h)Ho] V e x p [ - ( i t / h ) H o ]  

Given a bounded operator A, W(t)AW(t) -I satisfies 

d/dt[ W(t) AW(t)- ']  =(i2/h) W(/)[ V(t), A] W(t)-' 

and hence 

W(t)AW(t)-~=A+(i2/h) ds W(s)[V(s),A] W(s) -~ 
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Iterating this gives the norm-convergent Dyson perturbation series 

W(t) A W(t) -1 = (i2/h)" ds, d s2 . "  
n~o 

x F " - '  cls,,[ V(s,,) ..... [ V(s , ) ,  A ] .. . ] 
~0 

Expanding the commutators [ V(s,,) ..... [ V(s,), A] . . - ]  yields 2" terms of 
the form 

( - 1 )  " - r  V(s ' , ) . . .  V(s'r) AV(s 'r  + , ) . . .  Z(s',,) 

where s] ..... s',, is a permutation of s, ..... s,,. Let q%, denote the set of these 
2" configurations, a configuration being denoted by ~b (ref. 12, w 5.2). Then 

determines the permutation s', ..... s',,, which will now be denoted s~ ..... s~. 
Also r depends on ~b, but we shall not make this dependence explicit. Now 
denoting 

A a ( t )  = exp[ ( i t / hH]  A exp[ - ( i t / h ) H ]  

A(t)  = exp[( i t /h)Ho] A exp[ - ( i t / h ) H o ]  

we have A n ( t ) =  W(t) A(t)  W(t) - l  and hence 

i r fo-' A,(X-2r )  = (i)o/h)" ~ ( - 1) . . . .  ds, . . .  ds,, 
,, = 0 ~ ~ ~,, o 0 

x V(sT)... V ( s ~ ) A ( X - z r ) V ( s ~ + , ) . . .  V(s~) (18) 

It is notationally convenient to relabel the times s,,..., s,, at t,,..., t,,, where 
tj=~)~. '~ We may then reexpress (18) as 

AH(2-2 r )=  ~. (--iX~h)" 2 - l ) ' J " d t , . . - d t , ,  V(,, . . .  V(t.) 

•  V(tr+,) .. V(t,,) (19) 

where ~dt, . . .dt, ,  denotes integration over the appropriate sector of 
[0,  2 - 2 r ]  ". 

B. If A and B are bounded operators and 0~< rl ~< r2, then 

A , ( 2 - z r , )  B H ( 2 - z r z ) A , ( 2 - - ~ r , )  = {ABH(2-z ( r2 -  r,)) A} H (2-z r , )  

"~ Notice that t, ..... t,, are totally ordered,  but the order ing is not given by the index j of t r 
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Applying Eq. (18) twice gives 

An(2 -2rl) Bn(2-2r2 An()t -2rl) 

= •  (i2/h)"+"' • ( - 1 )  . . . .  E ( -1 ) " ' - r '  
. .n '  ~ ~ r 4,' E r 

x dul "" du, .r,-dsl ... ds,, 
u0 -2 r  1 

x V(uD . . .  V ( u ~ ) A ( , ~ - 2 r , )  

x { vl:,')... V(:r.')8(;~-%) Vl:r.'+,)"" V(S~:)} 
xA(A-Zrl)  V(u~+l)... V(u~) (20) 

= ~. (- i2/h)U 2 2 E (--l)r+r '  
N = 0  n + , , ' = N  q~eq), ~ 'eq)n .  

x f dt, -.. dtN V(t , ) . . .  V(tr) A(2-Zr,) 

x V(tr+,). . .  V(tr+r.)B(2-2r2) V(tr+~.+,)... 

x V(t,+,,,)A(A-2r,) V(C+,.+,) . . .  V(tu) (21) 

where we have introduced t,,..., tN as in Part A. 
In a similar way, the perturbative expansion is obtained for 

A~'  (~ -~r,  ) . . .  A '#'( ~ - : r ~ )  ,4 ,#,(~ -2r ~) �9 �9 A ~,(~ - : r ,  ) 

where 0 ~  r~ ~ -.. ~< rN. 

3.2. The Random Field 

A. Let the (nonrandom) field v(x) be "well-behaved": v(x) is the 
Fourier transform of the integrable function O(p) [and hence v(x) is 
bounded]. The potential V= v(q) is given by (V~)(x) = v(x) r We may 
write V= v(q) = ~ dk O(k) exp[ik, q] and hence 

V(t) = f dk O(k) exp[ ik. q(t)] (22) 

Furthermore, according to formula (27, we shall be interested in observ- 
ables A of the form 

A = qa(..~) = ~/~(22q) = dk q,jlk) exp[i22k .q] 
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and hence 

A( t )  = I dk  ~a(k)  exp[ i22k �9 q(t)]  (23) 

According to formula (2), the probabili ty that the particle is found in the 
(large-scale) region d I at (rescaled) time rl and in A2 at time r : ,  
0 ~< r, ~< r2, is given by 

p~ (A 1, r l ;  d2, r2) = (@, q~ , (~n(r]  )) q~:(~,( r2))  q~ . (~ ( r2 ) )  q 4 , ( ~ , ( r  l)) q') 

(24) 

Substituting Eq. (22) and (23) into Eq. (20), we have 

q4,(.~u(r ,)) q~:(-~(r2))  q.~:(-~n(r2)) q~,(-~n(r, )) 

= qa,(~)H ()1--2rl){ qa_,(-~) qa2(..~)} H ('~-2"t'2) qa,(~)H (2 -2r l )  

= Z (i;4h) "+" Z E ( - 1 )  . . . .  +,,._r, 

dul du,, f dsl ds,,. (25) 
a 0 d # . - 2 r t  - 2 r t  

x f dp , . . . dp ,, dp'l . . . dp',,, dx  t dr', dK 2 dx'  2 

^ t A A t A A t 

x O(p) . . .  0(p,,) 0(p]) . - .  v(p,,) rla,(Kl) q,~,(Ki) qa2(X.2) q~2(K2) 

X exp[ ip l ,  q (u~)] - . ,  exp[ ip~. q(u~)] exp[i22xl ,  q(2-2r l )  ] 

x exp[ ip' 1 �9 q(s~ ' ) ] . . ,  exp[ip'~,, q(s~,') ] 

• exp [ i).2K 2 �9 q( J. - 2r 2 ) ] exp[ i22K~ �9 q( 2 - 2r z) ] 

x exp[ ip ' ,+l ,  q(s~,'+l ) ] - - .  exp [ ip;,,, q(s~i) ] 

x exp[ i22K'~, q(2-zr l  )] exp[ ip~ + l" q(u~+l ) ] " "  exp[ ip,.  q(u~)] 

x f d t l . . . d t~z  f d k l . . . d k u d K i . . . d x  4 (26) 

A A A A 
x O(k l ) . . .  O(kN) qn,0r qa,(x2) qa_,(x3) q Z l l l ( K 4 )  

x exp[ ik l ,  q( t l ) ]  ... exp[ ik,. q(L)]  

x exp[ i22K1 �9 q (2 -2 r l ) ]  exp[ ik,+ 1" q(t ,+ 1 ) ] " "  (27) 
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x exp[  ikr+ r,. q(t~+~,)] exp[  i22 x2. q(~.-2r2)] 

• exp[  ij.2tr �9 q (2 -2r2) ]  exp[ ikr+ r, + ]" q(tr+~,+ l)] "'" (28) 

x exp[ ikr  +,,,. q(t~+,,,)] exp[  i2z~:4 �9 q ( 2 - z r l )  ] 

x exp[ik~+,,,+ ]" q(t~ +,,, + j)] -.. exp[  iku.  q(tu) ] (29) 

where in (26) we have substituted the variables t~ ..... t N for u~ ..... U n, s~ ..... s,,, 
as in Section 3.1. 

A similar formula holds for position measurements  at any number  of  
times r. 

B. The product  of  exponentials contained in (27)-(29) can be 
simplified by repeatedly using the Campbe l l -Bake r -Hausdo r f f  formula 
exp A exp B = exp(A + B) exp(1/2[A,  B]) ,  which holds when [A, B]  com- 
mutes with both A and B. Using [ q, ~ ] = ih and q(t) = q + (t /m) t~ yields 
(ref. 12, w 5.5) 

exp[  ikl �9 q(t] ) ] . . .  exp[  ik,, �9 q(t,,)] 

= exp[  - ( i h / ( 2 m ) o f f ]  exp[( i /m)( t ,  k~ + .. .  + t,,k,,). ~ ]  

x e x p [ i ( k  I + . . .  + k , , ) . q ]  

= exp[( ih / (2m)~f f ' ]  exp[i(k~ + ..- + k,,). q] 

x e x p [ ( i / m ) ( t l k l  + ""  + t , , k , , ) . ~ ]  (30) 

where the quadrat ic  forms ~ and ~r are given by 

X = E  tjv,kj.k, 
j . I  (31) 

J f ' = ~  t j ^ t k / . k ,  
j . !  

and j v 1= max{j ,  1}, j ^ 1= min{j ,  1}. Reexpressing the product  of expo- 
nentials in (27)-(29) using (30) and (31) leads to the following formula for 
Pc~(AI, r l ;  d2, r2), Eq. (24): 

(r r/4,(.~n(r ~)) r/A:(~ rtA..(-~n(r2)) q4,( ~162 ')  

= 2 N E 2 E I-1) 
N = O  n + n ' = N  ~b~On qV~On' 
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A A A A 
X O ( k l ) . . .  O ( k N )  qAI(KI)  Y]d2(K2) qd2(K3)  q,dl(K4) 

• exp[ --(ih/2m){.~r + ~ + ,~z} ] 

( [ )1  x I//,exp (i/m> j~t.ik,+.=,~ r..'. "..@ 

x e x p [ i ( ~  k , + 2  z ~ x , ) . q ] q J )  (32, 
j = l  a = l  

where we have set r 3 = r 2 and z" 4 = ~'~. The quadratic form X depends only 
on kl ..... ku and is given by 

N 
:)r= ~ t j v tk j .k  t (33) 

j . l = l  

The quadratic form o,ut]~ depends only on x I ..... K4 and is given by 

4 
.,Y~l = 2 z ~ r a v b X o ' X  b ( 3 4 )  

a , b = l  

The quadratic form ~ contains the cross-terms between the k's and the K'S 
and is given by 

.;U2=2 x , .  r,, ~ k./+2 z ~ tjkj (35) 
a = I j = I j = j ( a )  + I 

t~t 

/ \ 

~ = 0 , = - I  \ 

/114}  1 - -  ~ 

/ "~ \ \  \ 

i t=l Jv=l 
~ = l  / 

~-~'~/0 : / 

- ' / /  / /  / 

/ 

Fig. 1. A consecutive term with rescaled times r~, r:.  Times increase to the right. 
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where we have set j ( l ) = r ,  j ( 2 ) = r + r ' ,  j(3)=r+r', j ( 4 ) = r + n ' .  (See 
Fig. 1 ) 

A similar formula holds for general multiple-time position 
measurements.  

C. Let ~ be the subset of wavefunctions ~, such that ~,(x) and its 
Fourier  t ransform ~(p)  are integrable. '~ For  ~b~, ~'a ~ ~ we may express 
the scalar product  (~,~, ~b2) in the form 12 

f dp dx exp[ - ip .  x/h] ~,(p) ~2(x) 

and hence, fo r  ~, ~ H , ,  

(~b, exp[ ia- ~ ]  exp[ ib ,  q] ~,) 

= f dp dx exp[ - ip .  x/h] (k(p) ~,(x) exp[ ip. a ]  exp [ ix ,  b]  

Applying this expression to (32) gives the formula 

P~(A,, r l ;  A2, r2) 

= ~. (--i2/h) N ~ ~ ~ ( - I Y  +~' 
N=O n + n ' = N  ~ e t a ~  n qVr 

x dtl ... dtN dxl . . .  d h "  4 F~`31(KI) /'/,32(/(2) /']A2(N'3) rl,31(K4) 

x f dp dx exp[ - ip .  x/h] (k(p) ~k(x) 

[4 ] 
x e x p  i ~ (2"-x +(r,/m)p).h', exp[--(ih/2m):,~ql] 

0 = 1  

x ~ dk~ .. .  dkN~)(k~)... 0(kN) exp[ - - ( ih /2m) : ) f ]  

x e x p i  ( x+( t Jm)p) . k j - (h /2m)~  (36)  
1 

Expression (36) and its obvious extension to general muiti t ime position 
measurements  serves as the basic formula for the subsequent analysis. Its 
essential features are  

]~ ~ is norm dense in ~ .  Control of the limit A.---~ 0 for ~b s ,,'~ extends to all ~b e ~V' by the 
uniform boundedness of the operators n,j(3(r)). 

i., A factor (2nh)-"/2 has been absorbed into ~b(x). 



290 Landau 

1. The integrand in kl ..... k N contains an imaginary quadrat ic  
exponential,  where the quadrat ic  form aft, given by (33), does not depend 
on the regions A or times r, and is in fact the same as the quadrat ic  form 
studied in ref. 12, w 6 and w 8, with the same conclusion applying. 

2. The remaining exponential  is linear in kl ..... kN and will not play 
a role in the basic estimates controlling the 2 ~ 0 limit (al though it will 
play a role in the actual limiting value). 

3. The integrals over h't ..... x4 will be bounded in terms of 
FI4=, II qAjLll and the integrals over p, x by I[~ll, II~Lll- 

D. The above analysis for a single field v(x) will now be applied to 
a r andom field: For  each x, v(x) is a r andom variable. 13 We shall for the 
momen tum suppose the r andom field satisfies 

( exp[ f l ldp[O(p) l ] )<oo  for all real fl (37) 

The sum of the absolute value of the terms in (36) is bounded by 

II~lll IIr 1[4~,11~ IIr~,ll 2 ~ ( l /n ! )  2-2rt(2) . /h)  dk 10(k)l 
t! 

[ 1 x ~ ( l / n ' ! )  2 - 2 ( r a - - r l ) ( 2 2 / h )  dkl~(k)[  
n '  

L ~ A 
and 

by (37). Hence summat ion  over N and averaging over o may be inter- 
changed. Thus 

(P~(AI, r l ;  A2, r2) )  

_ -  E E I - l l  "+' 
N = 0  n + n ' = N  # ~ .  ~ b ' ~  . 

x dtl ... din dXl ... dx4 qa,(xl)  r/a,(K 2) q,t_,(x3) r/A,(K4) 

x f dp dx exp[ - i p .  x/h] ~(p) ~(x) 

t~ Let (~2. dp) be a probability space. The random field v is a real-valued measurable function 
on (R' xfLdx• 
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[4 ] 
x e x p  i ~ ( 2 2 x + ( r , / m ) p ) . x ,  exp[--(ih/2m)c,~ql] 

a = l  

x ~ dk~ ... dku(  O(k~)... O(kN)) exp[  -( ih/2m):~] 

x e x p  i (x+( tJm)p)  . k j - ( h / 2 m ) ~  (38) 
j l 

Note  that  the interchange of  integrat ion over k] ..... kN and average over v 

is justified since 

I dk , . . ,  dku( 10(k, ) l  10(kN)l oo ) < 

Similarly,  the average of a product of any number of such P,'s will also 
be given by averaging the product of all O's occuring in the integrands. 

E. The formula (38) for (P , (A] ,  r , ;  Az, r2 ) )  and its extensions will 
now be generalized to unbounded ,  t rans la t ion- invar iant  r andom fields by 
the methods  of  ref. 12, w 4 and w 5. The condi t ions  on the r andom field are 
as follows. 

l. Translation lnvariance: 

(F,(v(xl))""  Fk(V(Xk))) = (F,(v(xt + a)).. .  F~.(v(xk + a))) 

for any bounded  measurable  functions F] ..... Fk on R and any a �9 R ~. 

2. Regularity: 

( e  p''~~ < oo for all real fl 

3. Zero Mean14." 

(v(O)) =0 

4. Cluster Property: 

( v (x j ) . . ,  v(xr) v(xr+ , ) )  T= rr(Yl ..... YA 

where y~= x , . -x~+~  and the t runcated  correla t ion functions 7,. and their 
Four ie r  t ransforms 7~ satisfy 

ilT, I l l<  ~ ,  IlPrll~ < C r for some C > 0  

~4 If (v(0)) ~ 0, then this just adds a constant to the Hamiltonian and does not affect the later 
results. 
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From condition 4 we have 

(~(kl) . . .O(kr)O(kr+,))r=~r(kl  ..... kr)~(kl+ . . .kr+kr+l)  (39) 

Let ~N denote the set of all partitions P of { 1 ..... N} .  A partition P which 
partitions { l ..... N}  into M subsets is represented as (SM = N - -  M 

P = { fl(1) ..... fl(s, ),/2( 1 )} .... { fl(SM-, + 1 ) ..... fl(SM), p(M)} 

where 

fl(s:_ I + 1)< -.. <fl(sj)<p(j)  

Correspondingly, we decompose the correlation function (z3(k~).. O(ku)) 
into a sum of products of truncated functions 

( ~ ( k , ) . . .  0 ( k ~ ) )  

= ~. (t3(k#,ll)'"~(kpl.,~) t~(k,,t))) r . . .  
P ~ :..~,, 

x ( ~(kp~s~,_, + ,~) �9 .. 0(kp~.,.,,I) 0(k,~ MI) )  r 

= ~ ~,(k#~l, ..... k#,. ,I)'" ~r.(k#l.M_, +l) ..... k#~.,M,) 
Pe~N 

• ~ ( k p t l )  -t- ' ' "  q'- kpls, ) + k/,~l)) '-" 

x 6(k#~s,,,_, + l~ + "'" + k#~.,.,~ + k~ M}) (407 

where r j = s j - s j _ l  (So=0). 
The analysis of ref. 12, w and w 5, shows that the formula (38) holds 

also for the random field v(x), with (O(kt)...O(kN)) given by (40). We 
thus obtain 

( P ~ ( d l ,  rt; A2, r2)) 

= ~ (-i2/h)U ~. 2 ~, (-1)'+~' 
N = O  n + n ' = N  C E ~ n  ~ ' r  

I A A x ~ dtt...dtgd~c~...dh4rl~,(x~)q~,.(K~) 
P r .~r; 

x q~",(tc3) tl'~,(~c,) f dp dx exp[ - i p .  x/h] r ~(x) 

[4 ] 
xexp i ~  (22x +(r , /m)p) .K ,  exp[-( ih/2m)9~] 

x f dk ~ . . . d k N 6 ( k ~  + ... + k e , ~ + k / , ~ ) . . .  
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x 6(kp( s.~,_, + 1 ) + "'" + k p(sM ) + k~,~ M )) 

X }3r, (kpl]~ ..... kpl., ) ) . . .  ~,~, (kp~.,M_ ,+ J) ..... k pl.,,,)) 

x exp [ - (ih/2m) c,f ] exp i ~ ( x + ( t J m ) p ) . k j - ( h / 2 m ) c , f  2 
j = !  

(41) 

The variables k , ~  ..... k~,~M~ are eliminated by means of the 6-functions. 
The obvious extension o f  this formula holds for  ( P ~ ( d t ,  r I ;...; d , ,  ra)) 

and for  the average o f  products o f  P~'s. 

Remark .  The derivation of (41) proceeds by introducing (ref. 12, 
Definition 4.4) a cutoff random field 

= 6 - "  f dy h(6 - ' ( x  - y ) )  e -4": /2v(  V6(X) y) 
d 

where h is a smooth nonnegative function of compact support with 
dx h(x) = 1. Then 

and 

v,~(k) = [~((~k) f d v e - i e  -"e- 4":/2v(v) 

f ~k ]b~s(k) [ < f dk ]/~(6k)] f d ye  -4'''-/2 [v(y)] 

= C ( 6 / ( 2 l r ) )  "/2 f d ye  -,~,.:/2 Iv(y)l 

Thus by Jensen's inequality 

= (exp[ tiC Iv(0)l ] ) 

which is finite for all fl by condition 2. Thus the condition (37) of 
Section 3.2D holds and consequently (38) holds for v,~. The limit di--, 0 for 
the integrals in (38) is controlled by Lemma 5.4 and Proposition 5.5 of 
ref. 12. The limit d;~ 0 for (Pe,(d~, r~; d2, r_,)) is controlled by showing 
(ref. 12, Proposition 4.7) v6(x) r  ~ v(x) ~,(x) in Y{' for ff ~ C~:, with 
probability 1, which implies (ref. 12, Theorem 4.6) strong convergence of 
the unitary time evolutions with probability 1. 
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Remark. In ref. 12, {}4.1, the essential self-adjointness of Ho+2v(q)  
on C~:' was derived under the conditions ( Iv(0)l k) < ~ for some k > 2 and 
( e x p [ - O v ( 0 ) ] )  < oo for some 6 > 0 .  In ref. 3, Corollary V.3.3, essential 
self-adjointness is derived under the condition (Iv(0)l k) < ~ for some 
k > r(v), where v is the number of space dimensions and 

! + v/2 if v~<3 

r (v)=  if v = 4  

if v>~5 

3.3. The Large-Space-Time, Weak-Coupling Limit 

The individual terms of the perturbative expansion (41) of 
( PC (A 1, r ~ ; ~ 2, r2)) can be controlled in the limit 2 --+ 0 provided the ran- 
dom field v(x) satisfies, in addition to the conditions in Section 3.2E, a 
generalized cluster property formulated in terms of the partial Fourier 
transforms of the truncated functions ?r(Y~ ..... y~). A partial Fourier trans- 
form ~r is a transform with respect to a subset of variables y,, ..... y,,: 

f dy~,,.., dy~,exp[ -i(k~,, .y~,, + ... +k:,, .y~,)] y~(y~ ..... y~) 

Let 

where the supremum is 
Remark 1.9). 

A. 
form 

IlYr II = sup I1~ I1~ 

over all partial Fourier transforms (ref. 12, 

5. Generalized Cluster Property: The truncated correlation functions 
Yr satisfy 

In order to control the sum of the perturbative terms, the random field 
must be Gaussian. 

6. Gaussian Property: Truncated correlation functions of order 
greater than second order are zero: 

),~=0 if r >  1 

An individual term in the perturbative expansion (41) has the 

).N I dtl ...  dtN ~ ( t l  ..... tN) (42) 
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where 

o~(t ,  ..... tN) 

4 
=(--i/h)N (--|)r+r" I d K l ' " d t r  1-~ ?],JZ(Ka) 

x ~ @ dx exp[ - i p .  x/h] ~(p)  q/(x) 

I 1 xexp i ~ ( 2 2 x + ( r o / m ) p ) . x ,  

xexp - ih / (2m)2"-  ~ r, , , ,bX, Kb dkp( j ) . . .dkp(N_g)  
a , b = l  

x ~,(kp(~,..., kp(,, 0 " "  P~,(kp(,M-,+ ,) ..... k~(~,O 

x exp[ - i h / ( 2 m ) ~ # ]  exp[i~a] (43) 

The quadratic form ~ Z,r=] o'~rk~a~'k~(r), where the associated 
matrix (also denoted o/r is 

oJ~r = tp(i) v ~(1'~ + t~,) v =a'> - t=(/,) v at1) - t=(t) v p(t.) (44) 

and, if sj_ t <  1 < sj, we have defined ct(/)=p(j).  
The exponent d~ is linear in kp(~> ..... kp (N_g  ~ and is given by 

N--M 4 I 
d a = ( p / m ) .  2 [ t p ( t , - t ~ , l ) ] k p ( I , - ( h / m )  ~ K~. r o ~, kp(,, 

I= ] a= ) f l l l )  <~ j l a )  < a( I  ) 

~, [ tp , ) - t~( l~]  kpa)- 2 2 ~ t~(i)/,'pa~] +2  2 (45) 
j ( a )  < f l ( I )  f l ( / )  ~<j(a) < =(I)  J 

An upper bound for ~ is given by 

J~(t~ ..... tN)l ~ h - N  Ilr/.~, l] T II~"~.[I 2 II@ II~ II@]l ~ [lYr, II-- 11~% II [max . g ]  --./2 . 1 

(46) 

where 

m a x o g =  sup Idet.~g'l 
.l['-~.ll 

the supremum of determinants of submatrices of,Jh' (ref. 12, w 1; ref. 15, w 4). 
Because the matrix ~ the same as the matrix considered in ref. 12, 

w 5 and w 6, we may take over the results obtained there. (See also refs. 15 
and 19.) 
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An), term in the perturbative expansion (41)  which contains a truncated 
function y, o f  order higher than second order tends to zero as 2 --* O. 

We shall therefore consider those terms in (41) containing only two- 
point truncated functions of the r andom field. The parti t ion P associated 
with such a terms has the form 

P = { fl(1), a(1)} ..... { f l(N/2),  0t(N/2)} (47) 

The parti t ion thus defines a pairing of {1 ..... N}. We say the pair 
{ f l ( j ) , a ( j )}  is consecutive if tp~j~, t~j~ are consecutive. In other words, 
referring to the variables u, ..... u,,; s~ ..... s,,, in (25), uj is consecutive with 
uj+t ,  and sj is consecutive with sj+~. However,  u~ is not consecutive with 
s,,,, since 2 2r~ lies between them. A term in (41) will be called noncon-  
secutive if it contains at least one nonconsecutive pair; otherwise it will be 
called consecutive. Then (ref. 12, w 6.2; ref. 15): 

An), nonconsecutive term in (41)  tends to zero as 2---, O. 

B. We sha l lnow consider a consecutive term in (41). It is convenient 
to introduce the totally ordered time variables 0 ~< Tu <<. T o _  ,<~ . . .  ~ T~. 
In terms of the variables u~ ..... u,,; s~ ..... s,,, in (25) 

T t = s t ,  T _ = s :  ..... T, , .=s,c,  T , , , + t = u l  ..... T u = u , ,  

Then 0~< TN<~ . . .  <~ Tn,+l  ~< 2 -2 r ,  ~< T,,,~< .-. ~< T l ~< , , ] . - 2 r  2 and notice 
that for a consecutive term both n and n' must be even. As the term is 
consecutive, T2,_ ~ is paired with T2;, l =  1 ..... N/2. Enumerate  the pairs so 
that {tp~,~, t~,~} = { T2,_, ,  T2,}. Set 

1_ if tpu I = Tz;_ 

e ;=  1 if t/m ~= T2; 

Then 

tpm - t=m = et( Tz;_ i - Tz;) (48) 

t=l;~ = T2t- 1 - -  ( 1 + e;)/2( T2;_ i -- T2;) (49) 

Introduce the variables w I = j . 2 T 2 1 _ I ,  v l =  T 2 ; _ ~ - T 2 ; ,  1= 1 ..... N/2, and 
express J / o f  (44) and .~r of  (45) in terms of the variables v, w. To  do so, 
define 

10 if B a s u c h t h a t f l ( l ) ~ j ( a ) < a ( l )  

a; = otherwise 
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(See Fig. 1. This definition is equivalent to that in ref. 12, w and 
ref. 15, w Note that then ( - 1 ) ~ + " = ( - 1 )  y ' ' .  Then, using (48) and 
expression (44), we have 

Jet/= t #(l) - 10t(I) = glut 

Hence 
o#n,=a(l')g(I)v, for 1'>1 

N,2 { } o#= ~ elVlkpm, kpm+2 ~" at.kpl/.~ (50) 
/ = 1  I'>1 

In terms of the variables v, w, the linear form ~'~ is given by 
N/2 4 

sta = (p/m). ~. glV,kp,,,- (h/m) ~ h',. ~ ( r , -  w,) kp,,, 
1=1 a = l  f l ( I ) < ~ j ( a ) < a ( I )  

-22(h/m) ~ x , .{  ~. gtvtkpm+ ~. [(l+gl)/2]Vlkpm } 
a = I j ( a )  <fl(/) f l ( I )  <~ j l a )  <a(/) 

which converges to do as 2 ~ 0, where 
N/2 4 

Sgo = (pin,). Y'. glvlkn,,,- (h/m) ~ h',. ~ ( % -  Wl) kp, l) 
I=l a~l  f l l l i < ~ j ( a ) < a ( I )  

N / 2  

= (p/m). ~ glVlkpm- (h" 2 + h'3)" (h/m) ~. (r  2 - w t )  ~rlkpm 
I = 1  I 

--(Kl +X4).(h/m) ~. (rl--Wl) alkpm (51) 
I > n'/2 

Using the variables v, w, the expression (42) becomes 

I~i" dw) f('," dw2.., fii"'/:-~ dw,,./2 f~' dw,,./2 + , 

w/r - I 2 -  2( w i _ w2 ) 

X dw~/2 ~o 

i~-" ,., ; ~ I~-""'N/'. 

2-2(wn,/2--rl) (~t / + wn'/2+2) 
X f d#,,,/2 .. duN/2 ~(w, v) (52) 

~0 

Since the upper bound (46) is integrable over the range 0 ~< v < oo (ref. 12, 
w 1 and w 6.2), dominated convergence yields the limit 

822/77 / I -2 -21  
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where 

o~o(W, v) = ( - 1/h2) N/2 ( - 1 )z ~, ~ dp I@(P)[ 2 
. I  

x f dka(,i. . ,  dkp(N/2)~l(ka(ll)'" ~l(k#(N/z)) 

• Y. (r,-w,)a,kp,,>) 
/ > n ' /2  

x r 1 2 2 ( ( r 2 / m ) p - ( h / m ) ~ ( r 2 - w , ) a , k p ( , , )  
I 

x e x p  i(h/2m) ~ etvlkp~ll. 2 p / h - k # ( l l - 2  ~ arkpw I 
I = 1  I ' > 1  

(54) 

S u m m i n g  over  the e's is equ iva len t  to ex tend ing  the v- in tegra t ion  range  to 
( - o o ,  oo), and  us ing j5 

f ~ ds exp[ i( h/2m )sy ) ] = (4rim~h) 6( y) 
-c ; r  

the expression (53) becomes  

(-4rcm/h3)~ ( - l ) Z ~ '  dwl ".. dw,.+, ... 
I 

I = 1  I ' > 1  

We have non' denoted kail) by kl, ~l by y, N/2 by N, n'/2 by n', and n/2 
by n .  16 

15 This is rigorously justified as in ref. 12. w 6.3.4. 
t6 Although n is not explicitly expressed in (55). recall that N = n + n'. 
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3.4. S u m m i n g  the  Per tu rba t ion  Series 

In Section 3.3 the weak-coupling limit was taken term by term in 
perturbation theory. The sum of the terms can be controlled if the random 
field is Gaussian, which we henceforth assume. An individual term in the 
perturbative expansion has the form (42), where ~ ( t  I ..... t/v) has the upper 
bound (46). The form of the bound, involving max J / ,  is the same as that 
considered in ref. 12, {}6.3.2, leading to the same conclusion. For given 
values nt and/'/2 in (41), there are 2"'2"-" configurations, and for each there 
are (nl + n 2 - 1 ) ! !  pairings. With reference to (25) and (46), the upper 
bound of each term is 

~ 2 

)-/vh-N IIq~, II, 2 II IIq~,ll~ II~ll, Ilffll, IlYll/v/2 

. . .  ;:-, fl ;,,.-, 
x [0o dul ... du,, _,.,,-dsl ... *-:,, ds,,, [max d / ]  -~/2 (56) 

where N =  n~ + n 2. The bound (56) is increased if we replace the integral by 

~ -2r2 S n '  - I ' u n -  I 

ds,...~s ds,,,~s163 du,[max~#] -'/2 (57) 

The properties of o# lead to a bound for (57) given by (ref. 12, w 1.3) 

[ /v/2 C v/~ " ]( ).- 2r2)/V/2/( N/2 )! 

where C~/2 = 2 v ( v - 2 )  -~. Hence (56) is bounded by 

where 

c[ r2 Ilyll C./Jhq/v/2/(N/2)! (58) 

C =  IIq,~, II; I I~ ] i~  ]l~ll, I1~11, 

As there are N +  1 choices for nl, n2 with nt +n2=N, the terms of order 
N are bounded by 

2N(N - 1)!! ( N +  1)C [r2 Ib'll C~/2/h2]N/2/(N/2)! (59) 

Using (N-1)!!<2/V/2(N/2)! ,  we find that (59) is bounded by 
C(N+ 1)[r28 il)'ll Cv/2/h2] N/2. Hence the sum over N of (59) converges for 
r2 < to, where 

% '  = 8 C,/2 IlYll/h 2 (60) 

We recall that Ib'll = max{ Ilyll,, 11911, }. 
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The same methods yield convergence of the perturbation series for 
(Pq,(Ai, r l ;  ,42, r2;...; zJa ,  r a ) ) ,  where 0<~rl ~<rL~< -.. ~< G <  to. 

We extend this convergence, proved for @, ~ e ~ (Section 3.2C), to all 
@ e o~ by the uniform boundedness of the operators qaj(-~(%)). 

3.5. Large-Scale, Weak-Coupling Limit with Probability 1 

A. In Section 3.4 we showed the convergence of (Pq,(AI, rl ;  ZI2, r2) )  
to the sum over n and n' of (55) for 0~<r,~<r2<ro.  The techniques 
of ref. 12, w can be used to extend this to the convergence of 
P , ( d j , r t ; d 2 ,  r2) to l i m a _ o ( P , ( d l , r l ; d 2 ,  r2)) as L p functions of 
the random field, for 1 ~<p< o~. This is done by using IP,(d] ,  r~; A 2, r2) I 

1 together with the L2-convergence of P , (A] ,  r~; d2, r2) to 
l i m a _ o ( P ~ , ( d l ,  r l ; d  2 ,  r2) ) ,  which follows from 

( P ~ ( d l ,  r l ;d2,  r2) 2) -- (P~(d l ,  r , ; d 2 ,  r2)) 2---'0 (61) 

B. The proof of (61) is shown term by term in perturbation 
theory, by showing that an), term hl the perturbative expansion of 
(Pcc(dl , r l ;d2 ,  r2) 2) which does not factorize tends to zero as 2--+0. 
The proof of this follows by the methods of ref. 12, w 1 and w 8, which 
depend on properties of the matrix ~.,t/. The proof of (61) is now com- 
pleted by showing convergence of the perturbative expansion for 
(P~( A , ,  rl;/12, r2)2). Indeed, as in ref. 12, w 8.4.6, if the order of the per- 
turbative terms for the two factors of P~,(A l , r l ;  A2, r2) is nt, n2 and n'l, n~, 
with N = n l + n 2 + n ' l + n  2, then the number of configurations is 2 u, the 
number of pairings is ( N - 1 ) ! ! ,  and the time integral of [ m a x , # ]  ~/2 is 
bounded by 

( " N / 2  (62) [ (), -2r2)"/a ! ] [ (2 -'-rz)h/b ! ] ~ ~/2 

for some a, b with a + b = N / 2 .  Using [C"/aI][Ch/b!] <~(2C)"+b/(a+b)!, 
we obtain that (62) is bounded by 

Thus, since 

(22 2 r 2 C v / 2 ) N / 2 / ( g / 2 ) !  

(8Cv/2 Ilyll r2/h2)'"'+""+"i+"")/2 < m 
,I 1 . n 2 . ,q. ,i; 

for r 2< ro ,  the convergence of the series for (P~ , (d l , r , ;d2 ,  r2) z) is 
shown. In the same manner we conclude: 

P~,(A I , r , ;  A=, r2;...; au, G) convergence to l ima_o(Pe , (a l ,  r t ;  
A 2, rz ;...; A o, r , ) )  as L p functions of the random field, for 1 <~ p < oo. 
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C. It is generally true that i f fa  converges to f as L 2 functions, then 
there is a subsequence 2k --* 0 such that fa  converges to f with probability 
1.17 Consequently,  there is a subset Is of r andom fields I 2 0 c  f2 of  measure 
1 and a sequence 2k ~ 0, such that Pq,(A l, r l ;  zl2, r2) converges for fields 
in f20 to l ima_ o(Pq, (A i, r l; 32, r2)) .  This extends to a countable set of A's 
and r 's with all r j <  ro. This also extends to a countable set of  qJ's, and 
since ~r is separable, to all ~b E ~ .  

3.6. The Classical J u m p  Process 

For  a Gaussian random field and r 2 < r  o, the limit as 2k ~ 0 of 
P r  r l ;  zl2, r2) is, with probabil i ty 1, given by the sum over n, n' 0f(55).  
This joint probabil i ty is in fact given by classical particle trajectories, where 
the particle moves with constant  velocity between random jumps  in direc- 
tion (the speed remaining constant) .  

The trajectory in phase space of a freely moving classical particle is 
given by the straight lines (x(r) ,  p ( r ) )  = (x + (rim)p, p). Given an initial 
probabil i ty distribution dlt(x, p) for the particle and a function f(x,  p) on 
phase space, the expectation value (average value) o f f ( x ( r ) ,  p( r ) )  at time 
r is given by ~dp(x ,p) f (x+(r/m)p,p) .  The function f ( x+(r /m)p ,p )=  
( T~ f)(x,  p) is the conditional expectation of f(x( r),p( r) ) given the initial 
values (x(O)=x,p(O)=p). Of course in this case the mot ion is deter- 
ministic and T O defines a one-parameter  evolution group. 

For  a Markov  process with stat ionary transition probabilities, the 
conditional expectation determines a semigroup T~ such that the con- 
ditional expectation of f(x(r),p(r)), given the initial values ( x ( 0 ) = x ,  
p ( 0 ) = p ) ,  is (T, f)(x,p) .  Given an initial probabil i ty distribution dIl(x, p), 
the expectation value o f f ( x ( r ) ,  p ( r ) )  is 

( f ( x ( r ) ,  p ( r ) ) )  = f dp(x, p)( T,f)(x,  p) (63) 

Fur thermore ,  by the Markov  property ,  the expectation value of 

fl(x(rl),p(rl))f,_(x(r2),P(r2)) with 0~<rl~<rz  

is given by 

f dt~(x,p) T~,{fI(T~, " ~,f2)}(x,p) (64) 

t7 It is only necessary to choose 2 k so that Y'k lira, - f l l~ < m. Then Zk I f  a, - f l  2 is finite with 
probability 1, which implies fa, "-* f with probability 1. 

~8 That is, fields o(x, o~) with co e s'2o. 
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Write T ~ = e x p [ - r 5 0 ] ,  where 5 ~ is the generator of the semigroup. 
Suppose 50 = 500 + 501, where 500 is the generator of the free evolution T ~ 
and suppose ~ generates a pure jump process. That is, the particle 
remains fixed at a point (x, p) of phase space until it jumps randomly to 
another point (x', p' ) with some jumping rate. The process generated by 50 
is then described as a particle moving with constant velocity between 
random jumps. As in Section 3.1, a perturbation expansion for T~ may be 
developed: 

N = O  

x T O T O ..N501 "'" TO cp T O 
W N ' ~ 1  W N - -  I - -  V.' I - -  W 2 ~ I r - -  W I 

= ( - 1 )N dw I d w 2 . . ,  d w  N 
N f f i O  

x ~(WN) 50,(WN_ I) ' '"  ~ l (Wl)  T~ (65) 

where 501(w)= T~ ~ .... {With 50t g ivenby (66), Tr may be defined by 
the perturbative expansion on all continuous functions on phase space. The 
series converges for all values of r, pointwise and uniformly on compact 
subsets of phase space, since the series for ( T , f ) ( x , p )  depends only on 
the values o f f ( x ' , p ' )  for [P ' I= IP l  and I x ' - x l ~ r l p [ .  Furthermore, 
1(501 f ) (x ,  P)I ~< C(Ipl) suplp,i = Ipl If(x,  p' )1.} 

Let 50~ generate a pure jump process in momentum space (the coor- 
dinate x being unchanged), defined by 

( 50~ f ) ( x , p )=  ~ ( - 1 ) " ( 4 n m / h  3) 
a = O , l  

x f d k y ( k ) f ( x , p - a h k ) J ( k Z - ( 2 / h ) p . k )  (66) 

(See ref. 12, w ref. 15, w and refs. 6 and 19.) Then hk represents the 
transferred momentum and the J-function ensures conservation of energy. 
Then 

(50t(w)f) (x ,  p) = ~ ( - 1) ~ (4nm/h 3) 
o" 

• f dk y(k ) f ( x  + ( w/m ) ahk, p - ahk ) J(k 2 _ ( 2/h ) p .  k ) 
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Similarly 

[ s ~(w~ )f](x ,  p) 

= ~ ( - 1 )o, +,,,. (4lrm/h3)2 f dk l dk2 ~ ' ( k  I ) y ( k 2 )  

~r l ,  ~2 

x f ( x  + (w2/m)a2hk 2 + (wl/m) a,hkj, p -  a2hk2 - alhkl) 

• - <2/h)p. k2) ,~(I, ~ - (2/h)p. k, + 2aJ,2.  k,) 

It is also straightforward to show that 

( - 1) u [ ~(CON)'-" AV~(Wt) r ~  p) 

[note the presence of T o in (67)] is equal to 

(67) 

~. (-47rm/h3)U(-1)~'~ dkl ...dkNy(ktJ...)'(kN) 
a l  ,..., a N  

x f  x+( r /m)p - (h /m)  ~ ( r -w j )  ajkj, p - h  ajkj 
j = t  j = ]  

• 1-I ~ k ~ - 2 ( p / h l . k , + 2  Z ~,,k, .k, ,  
1=1 1 '>1 

By comparing (68) with (55), it is seen that 

(68) 

t"  

lim P~(d~,r,;Az, rz)= dp Iq,(p)l 2 ,,{qT~,(T . . . .  ,q],)}(0, p) (69) 
2 ~ 0  J - " 

which is the expectation value (q.~,(x(rl)) z r/zL,(.x](r2)) 2) of the jump pro- 
cess with initial distribution ~(x)dx [~b(p)/2 dp. With the interpretation of 
qZa(x) discussed at the end of Section 1.2, we see that the joint distribution 
of multiple-time position measurements is, in the limit 2 ~ 0, reproduced 
by the classical jump process. 

The convergence with probability 1, (69), may be expressed in the 
form 

lim (r q~,(~(rl)) r/.~_,('~(r2)) r/a,(..~(r2)) qA,(-~(rl))~ t) 

(~b, T~,{q-a,(T,:_~,q3~)}( , v~)~) (70) 

Since (70) holds for all ~ E .~  it follows that, for all regions dj from a 
countable set ~ and times rj from a countable set ~-, with probability 1, 

q~,,(~(rj,)) q~j.(~(rj:)) q~,.(~(rj:)) q~,,(_o(rj,)) 
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"~ 2 converges weakly to T~j,{q-aj,(T~,,_~j~l~j)}(O,~). This extends to any 
mihiple-time position measurements with regions from ~. and times from ~-. 

By shifting the particle by the macroscopic amount X o, a general 
initial distribution h(Xo) d(Xo) can be constructed (Section 2.7). ~9 A similar 
formula holds for general multiple-time position measurements. 

The Bol tzmann Equat ion.  If  the initial probability distribution is 
dlL(x, p) =g(x, p) dx dp, then Eq. (63) takes the form 

( f ( x ( r ) ,  p ( r ) ) )  = f dx dp[ T*g](x, p) f (x ,  p) 

Hence the probability density at time r is 

g~=T*g  (71) 

where T* is the Hilbert space adjoint in L2(RVxRV, dxdp) of T~. 
A straightforward calculation yields T ~  T~ or L#~' =-L~'0. On the 
other hand, L,a* = L, at, since ~1 is a positive operator. [See the discussion 
of Eq. (74) below] Then g~ satisfies the equation 

O~ g~(x, p) = -(1/m) p. Oxg(x,p) +41rm/h ~+ i 

x f dqy ( (p -q ) /h ) [g (x ,q ) -g (x ,p ) ]6 (qZ-p  2) (72) 

[See Eq. (73) below.] 
Equation (72) has the form of the linear Boltzmann equation for the 

classical Lorentz gas given in ref. 20, eq. (2.28). 

The  Limit  h ~ 0 .  The limit of the generator s (66), as h-- ,0  
can be computed (ref. 6, w 7). We give a brief discussion, and drop the 
variable x, as it plays no role. First, with q = p - h k ,  

(s =4run/h~+' I dq y((p - q)/h)Ef(p) - f ( q ) ]  6(q 2 -p'-) (73) 

Then, using y ( - k )  = y (k ) ,  2~ we have 

f dp g(p)(LPif)(p)= 2rcm/h"+'f dp f dq y((p-g)/h) 

x [ g ( p ) - g ( q ) ] [ f ( p ) - f ( q ) ]  6(q 2 _p2)  (74) 

~Q The translation invariance of the random field is used here. 
20 (v(O)v(x)) = (v(x) v(O)) = (v(O) v(-x)). 
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which, since 7(k)>/0, shows the positivity of the operator L,e~. Going back 
to the variable k, 

f dp g(p)(.oq]f)(p) 

t r m  f dk 7(k) f d p [ g ( p ) - g ( p  --hk)]/h[f(p)-f(p-hk)]/ 

h8( p . k - hkZ/2 ) 

rcm f dk 7(k) f dp k.  Vg(p)k.  V f ( p ) 6 ( p  " k ) 

= f dp ~, A~,p O~, g(p) Of f (p)  

where 

A~,p(p) = f dk ),(k) k~,kp ,~(p. k) 

Hence limh_ o LPi = ~ ' ,  where 

LP'f = - ~ a:,(A:<p all f )  
~p 

Hence in the limit h ~ 0 the linear Boltzmann equation (72) goes over to 
the linear Landau equation [ref. 20, Eq. (2.19)]: 

O~ grtx, p) = --( 1/m)p . a.,. g(x, p) + ~ ap=[ A~a(p) ap~g(x, p)]  

If the random potential is isotropic, so 7(k)= F(lk[), then 

A~p(p) = (6~p-p~pp Ip1-2) c/I pl 

where c = rr ~ a t ( (3F(( )  (for v = 3). These coefficients A~a(p) have the form 
given in ref. 20, Eq. (2.20). 

3.7.  M a n y  Par t i c l es  

The weak convergence with probability 1 obtained in Section 3.6 
immediately extends to any finite number N of particles, using the fact 
that if, for j = I , . . . , N ,  Aj(2) converges weakly to Aj in o,Y', then 
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A,(2) |  -.. |  converges weakly to A~| ... | in ~ |  .-. | 
Thus the joint distribution of multiple-time position measurements on N 
particles is given, in the large-space-time, weak-coupling limit, by the joint 
multiple-time position distribution of N classical particles performing 
independent equivalent jump processes, with initial distribution 

h(X~o '' ..... X~o u') I~(p'",..., p'm)lZ dX~o ' ' ' ' '  dX~o m d p " ' . . ,  dp 'm 

(We have included a macroscopic displacement of the particles as in 
Section 2.7. Otherwise, all particles start at x = 0.) 

If the quantum particles are initially uncorrelated, the wavefunction 
q j = ~ Q . . . |  and h factorizes. It follows that in the large- 
space-time, weak-coupling limit, the classical particle trajectories will be 
uncorrelated. 

The discussion of Bose and Fermi statistics leads to the same conclu- 
sion as in Section 2.7, but the argument is different since we have weak 
convergence and not strong convergence in the limit 2 ~ 0. We need to 
consider (52), where in the formula (43) for ~(t~ ..... tu) we include a factor 
exp[ i2-2X'0, p ]. The upper bound (46) is unchanged, and hence dominated 
convergence again implies (53), where, however, now ~o(W, v)=0.  This 
follows from the fact that, in the formula (43) for ~(t~ . . . . .  t N )  , 

f dp (O(p)exp[ i2-2Xo-p] exp[ - ip .  x/h] 

xexp i(p/m), r . K . +  ~ [tp.~--t~.~]kp~l~ -~0 
I / = 1  

as 2--* 0 by the Riemann-Lebesgue lemma. (A dominated convergence 
argument completes the proof.) 

4. MACROSCOPIC  LOCALIZATION OF RELATIVISTIC 
PARTICLES 

The previous sections have dealt with the large-space-time description 
of non-relativistic quantum particles. The same procedure applies to free 
relativistic particles with Hamiltonian H =  (~2c2 + rn%4) ~/2 and indeed to a 
general dependence of energy e(p) on momentum p. Some difficulties in 
defining localization for relativistic particles (25, 18) are removed by con- 
sidering the large-space-time limit. (See also ref. 22.) On a macroscopic 
scale, particle trajectories will be obtained which have the form X(r)= 
Xo + rv(p), where v(p) is the group velocity 

v(p)=Vpe(p) 
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In the relativistic case v ( p ) = p / ( m  2 "-[-p2/c2)1/2. Since Iv(p)l ~ c, the velocity 
operator v(~') is bounded. 

The wavefunctions of the particle will be given as square-integrable 
functions of momentum and the Hilbert space will be represented as 
o,'4r = L E ( p  3, d3p). (Spin degrees of freedom are ignored, as they play no 
role in the present analysis.) The momentum operator ~ is multiplication 
by p and the position operator is q = ihOp. This position operator does not 
transform in a Lorentz-covariant manner, but in the macroscopic limit 
Lorentz-covariant trajectories are obtained. An interpretation of this is that 
an apparatus to measure "microscopic position" has a complicated descrip- 
tion with respect to a-moving observer, but on a macroscopic scale a 
covariant transformation law is obtained. 

The usual commutation relations hold between q and ~,  
[ q:,, ~p] = ihfi~,~, and 

exp[ia ,  q] exp[ ib. ~ ]  exp[ - i a .  q] = exp[ - i h a .  b] exp[ib- ~ ]  

Thus 

exp [ ia.  q ] exp [ - i( t/h ) e(~) ] exp [ - ia. q ] = exp [ - i( t/h ) e( ~ - ha ) ] 

Consequently, 

exp[ia ,  q(t)] = exp[ i ( t /h )  e(~) ]  exp[ ia- q] exp[ - i ( t / h )  e(~)]  

= e x p [ i ( t / h ) { e ( ~ )  - e ( ~  - ha)} ] exp[ ia. q] 

= e x p [ i ( t / h ) a . f ] d s v ( ~ - s a ) ] e x p [ i a . q ]  

It follows on taking the limit a ~ 0 that on the domain of q, 

q(t)  = q  + t v ( ~ )  

The development now parallels the preceding discussion of nonrelativistic 
particles. The wavefunction of the particle may be given a macro- 
scopic space-time displacement 2-Z(Xo, to) using the unitary operator 
exp[ ( i /h )  2 - 2 ( r o H - X o . ~ ) ]  and this displacement may be shifted to the 
position observable: 

q(t)  --* 2 - 2 X o  + q + (t - 2-2ro) v(~) 

Now introduce the macroscopic time r = 2zt and the macroscopic position 
operator 22 = 22q. Then 

~( r )=22q(2  2 r ) = 2 2 q + X o + ( r - r o ) V ( ~ )  



308 Landau 

In the limit 2 ~ 0 ,  .~(r) converges strongly on the domain of q to the 
bounded operator X(r): 

. ~ ( r ) - - , X ( r ) = X o + ( r - r o ) v ( . ~ )  as 2 - , 0  

and hence for any bounded function F which is continuous except on a set 
of Lebesgue measure 0, 

F ( . ~ ( r ) ) ~ F ( X o + ( r - r o ) V ( . ~ ) )  as 2 -~0  

The joint distribution for multiple-time position measurements will then be 
given by the trajectories X(r)=)Co+ ( r - % ) v ( p )  with probability density 
Iq/(p)l 2. 

R e ma rk .  The Lorentz covariance of the macroscopic position 
operator may be shown as follows. The wavefunction with the space-time 
displacement 2-2(%, X0) is 

~(~o. xo)= exp[(i/h) 2-2(r0, Xo). (H, c2~)] ~b 

where the Minkowski scalar product is 

( Ao, A_ ) . ( Bo, _B) = AoBo - c -  "-A . B 

and (H, c2~) transforms as a four-vector: 

U(A) - '  (H, c2~) U(A)=  A(H, c2~) 

The Lorentz transformation A applied to ~btro. x~) is 

U(A) qS(~o. Xo ) =exp[  (i/h) 2-2(r0, Xo) . A - l (H,  cZ~)] U(A)qJ 

= exp[ (i/h) 2 -2( , to, x~ , ) . (H,  c ' -~)]  U(A)q, 

where (ro,' X~) = A(ro, Xo). Now transferring the displacement 2-2(ro,' X~) 
to the observables gives 

.~(r) = 2Zq + (r -- r~)) v(~) + X~ 

and now transferring the Lorentz transformation to the observables gives 

.~(r) = 2zU(A) -  ~qU(A) + (r - r~) v(~ ' )  + X'o 

where ~ '  is the Lorentz-transformed momentum. In the limit 2---, O, -~(r) 
converges to 

x~) + (r  - r~) v(,~' ) 

which just corresponds to the Lorentz-transformed trajectories. 
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